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§1 THE CLIFFORD ALGEBRA REPRESENTATION OF THE ORTHOGONAL GROUPS

§1 The Clifford Algebra representation of the Orthogonal groups

ℜ.1 Dirac metrics-the basis of the clifford algebra

in order to define the Dirac type hamiltonian, we try to define a Clifford algebra Cln for the group
SO(n), namely, the bi-vectors in the Clifford algebra Cln form the basis of the Lie algebra of the group
SO(n).

since the construction of the Clifford algebra can be very hard for arbitrary dimension, at present we
consider the Clifford algebra Cl2n+1 for the group SO(2n+1) by consider the construction using conduction,
since we know that the Clifford algebra Cl3 for SO(3) is spanned by

SpanR{1, σx, σy, σz, σxσy, σxσz, σyσz, σxσyσz} ∼= C2×2

note that even if σxσy = iσz, σxσy and σz is linear independent over R.
and then define the Cliford algebra Cl2n+1 by induction from Cl2n−1

Γi<2n = Γ′
i ⊗ σx Γ2n = I ⊗ σy Γ2n+1 = I ⊗ σz

thus this representation of the Basis of the Clifford algebra Cl2n+1 is 2n dimensional metrics by construction
which is also the minimum dimension of metrics representation of the Clifford Algebra Cl2n+1. since the
total number of independent metrics with respect to the real R is

2× 2n × 2n = 22n+1

which is the same as the real dimension of the Clifford algebra Cl2n+1,actually this is due to the basic fact
that Cl8k+l ∼= ⊗kR

16×16 ⊗ Cll and Cl3 ∼= C2×2, Cl5 ∼= H2×2 ⊕H2×2 and Cl7 ∼= C8×8, we know that the
behavior of Cl2n+1 is similar for even n which is quite different from the odd n.

within the above construction, the pseudo-scalar is just

ω = Γ1Γ2 · · ·Γ2n+1 = in

and the metrics Γ2k+1 is real and Γ2k is purely imaginary, and we can define product of all the real metrics

B = Γ1Γ3 · · ·Γ2n+1 → B−1 = B† = Γ2n+1Γ2n−1 · · ·Γ3Γ1

and we can compute that

BΓ2kB
−1 = Γ1Γ3 · · ·Γ2n+1Γ2kΓ2n+1Γ2n−1 · · ·Γ3Γ1 = (−1)n+1Γ2kBB

−1 = (−1)n+1Γ2k = (−1)nΓ∗
2k

since we know Γ∗
2k = −Γ2k, furthermore

BΓ2k+1B
−1 = Γ1Γ3 · · ·Γ2n+1Γ2k+1Γ2n+1Γ2n−1 · · ·Γ3Γ1 = (−1)n−kΓ1Γ3 · · ·Γ2k+1Γ2k+1Γ2k+3Γ2n+1Γ2n+1Γ2n−1 · · ·Γ3Γ1

= (−1)n−kΓ1Γ3 · · ·Γ2k+1Γ2k+1Γ2k+1 · · ·Γ3Γ1 = (−1)n−kΓ1Γ3 · · ·Γ2k+1 · · ·Γ3Γ1

= (−1)n−k(−1)kΓ2k+1Γ1Γ3 · · ·Γ2k−1Γ2k−1 · · ·Γ3Γ1 = (−1)n−kΓ2k+1Γ1Γ3 · · · · · ·Γ3Γ1

= (−1)nΓ2k+1 = (−1)nΓ∗
2k+1

since Γ2k+1 is real metrics, so we can write the above into a compact form as

BΓiB
−1 = (−1)nΓ∗

i

we need this operator B and the above equation due to the fact that we want to construct anti-linear
symmetry operator time-reversal T and Particle-Hole C from B in the following context in considering the
Dirac model.
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

ℜ.2 The symmetry of the Dirac metrics

there is a degree of freedom of choosing these Dirac metrics, given a basis of Clifford algebra for
SO(2n+ 1):

Γ1,Γ2, · · · ,Γ2n+1

we can choose an elements of SO(2n+1), namely O and consider the following metrics

{γi =
∑
j

Oi,jΓj}

we can directly calculate that

{γi, γj} = Oi,kOj,l{Γk,Γl} = 2Oi,kOj,lδk,l = 2Oi,kOj,k = 2δi,j

which means that this set of metrics can also be used as the basis. so there is SO(2n+1) degree of freedom
of choosing the basis.

besides, we can find that

γ1γ2γ3 · · · γ2n+1

=
∑

i1,i2,··· ,i2n+1

O1,i1O2,i2 · · ·O2n+1,i2n+1
Γi1Γi2 · · ·Γi2n+1

=
∑

σ∈S2n+1

((i1, i2, · · · , i2n+1) = σ(1, 2, · · · , 2n+ 1))O1,i1O2,i2 · · ·O2n+1,i2n+1
Γi1Γi2 · · ·Γi2n+1

= O1,i1O2,i2 · · ·O2n+1,i2n+1
ϵi1,i2,··· ,i2n+1

Γ1Γ2 · · ·Γ2n+1

= O1,i1O2,i2 · · ·O2n+1,i2n+1
ϵi1,i2,··· ,i2n+1

in

= det(O)in

= in

in the above, we have used the fact if any two index ik, il is the same, then the sum is zero, for example
if in choosing the term from the second one such that i2 = i1, then∑

i1

O1,i1O2,i1Γi1Γi1γ3 · · · γ2n+1 =
∑
i1

O1,i1O2,i1γ3 · · · γ2n+1 = 0

since O is an element of SO(2n+1). so the non-vanishing term after summation must satisfying i2 ̸= i1

and so on.

§2 The Dirac model for different symmetry class and different spatial dimension

in this section, we try to consider the Dirac type hamiltonian for any symmetry class and any spatial
dimension. which can be written in momentum space as:

H(k) =
D∑
i=0

ri(k)Γi

and the Γi are the elements of some kind of basis of Clifford algebra.
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

ℜ.1 The hamiltonian constructed for the two complex classes

we start from the two complex class A and AIII which contain no anti-linear operators.
for any spatial dimension D in these two complex classes, we can choose n = [D+1

2
], and consider the

Clifford algebra Cl2n+1

if D is even, D = 2m → n = m, 2n + 1 = 2m + 1 = D + 1, the Clifford algebra is Cl2m+1 thus we
choose Γ0 = ΓD+1 = Γ2m+1, and there is no extra Γ left behind for us to define the Chiral symmetry
operator(which anti-commute with H(k)), since we have constructed the hamiltonian in D dimensional as
H(k) =

∑D
i=0 ri(k)Γi,thus this hamiltonian belongs to the symmetry class A.

A : D = 2m H(k) =
D∑
i=0

ri(k)Γi Γ0 = ΓD+1 = Γ2m+1 Cl2m+1

if D is odd, D = 2m − 1 → n = m, 2n + 1 = 2m + 1, the Clifford algebra is Cl2m+1 thus we can choose
Γ0 = ΓD+1 = Γ2m, and there is also a Γ left behind which is ΓD+2 = Γ2m+1, since it anti-commute
with all the Γi≤D, it can serve as an chiral operator for the hamiltonian H(k) =

∑D
i=0 ri(k)Γi, thus this

hamiltonian belongs to the class AIII.

AIII : D = 2m− 1 H(k) =
D∑
i=0

ri(k)Γi Γ0 = ΓD+1 = Γ2m, S = Γ2m+1 Cl2m+1

so we have constructed the required hamiltonian for these two complex symmetry classes which can take
non-trivial topological order.

in the dimension D = 2m − 1, if the system takes no chiral symmetry, then we can add extra term
rD+1Γ2m+1 to the hamiltonian

H(k) =
D∑
i=0

ri(k)Γi + rD+1Γ2m+1

then the classification of this hamiltonian can be characteried by the homotopy group π2m−1(S
2m) , which

is trivial, this corresponds to the case that in odd dimension the symmetry class A takes trivial topological
phases.

ℜ.2 the hamiltonian constructed for the eight real classes

in the real class, there is anti-linear operators which make a connection between H(k) and H(−k), so
in this case, we impose extra symmetry on the choosing of the parameters for the Dirac type hamiltonian,
since in the gap closing point, the energy band behaves like k⃗ · Γ⃗, in the hamiltonian

H(k) =
D∑
i=0

ri(k)Γi

we impose(which is essentially the case for the linear Dirac Model)

ri(k) = −ri(−k) r0(k) = r0(−k)

which means that r0 behaves as the mass term in the model and ri behaves as the momentum. and we
have

TH(k)∗T−1 = H(−k) → r0(k)TΓ∗
0T

−1 = r0(−k)Γ0, ri(k)TΓ∗
iT

−1 = ri(−k)Γi
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

which means that
TΓ∗

0T
−1 = Γ0 TΓ∗

iT
−1 = −Γi

since we have imposed the constrain on the parameters
similarly, for the particle-hole symmetry,

CH(k)∗C−1 = −H(−k) → r0(k)CΓ∗
0C

−1 = −r0(−k)Γ0, ri(k)CΓ∗
iC

−1 = −ri(−k)Γi

which means that
CΓ∗

0C
−1 = −Γ0 CΓ∗

iC
−1 = Γi

∮
.1 The Primary Series

in order to discuss all the real cases, we at first try to consider the diagonal entry of the periodic
table[3] which is called the primary series in literature. for the spatial dimension D, we consider n = [D+1

2
]

and set Γ0 = ΓD+1 as before.
Even D case: when D is even, D = 2m → n = m, 2n+ 1 = 2m+ 1, D + 1 = 2m+ 1,Γ0 = ΓD+1 =

Γ2m+1,the Cliffod Algebra is Cl2m+1, there is no extra Γi left behind and there is also no chiral symmetry
in this case. what left for us is to find the possible T or C operators. define

A = BΓ0

we can find that

AΓ∗
i = BΓ0Γ

∗
i = Γ1Γ3 · · ·Γ2m−1Γ2m+1Γ2m+1Γ

∗
i = (−1)mΓ2m+1Γ1Γ3 · · ·Γ2m−1Γ2m+1Γ

∗
i = (−1)mΓ0BΓ∗

i

= (−1)mΓ0(−1)mΓiB = (−1)1+mΓiBΓ0 = (−1)m+1ΓiA

→ AΓ∗
iA

−1 = (−1)m+1Γi

similarly, we have

AΓ∗
0 = BΓ0Γ

∗
0 = Γ1Γ3 · · ·Γ2m−1Γ2m+1Γ2m+1Γ

∗
2m+1 = (−1)mΓ2m+1Γ1Γ3 · · ·Γ2m−1Γ2m+1Γ

∗
0 = (−1)mΓ0BΓ∗

0

= (−1)mΓ0(−1)mΓ0B = (−1)mΓ0BΓ0 = (−1)mΓ0A

→ AΓ∗
0A

−1 = (−1)mΓ0

so if m is even, A behaves like Time reversal symmetry and if m is odd, A behaves Particle-Hole symmetry
on the hamiltonian

H(k) =
D∑
i=0

ri(k)Γi

besides, we have

AA∗ = BΓ0BΓ0 = Γ1Γ3 · · ·Γ2m−1Γ2m+1Γ2m+1Γ1Γ3 · · ·Γ2m−1Γ2m+1Γ2m+1 = (−1)
(m−1)m

2

thus we can conclude which symmetry class the hamiltonian belongs to, namely

D = 2,m = 1, A = C,CC∗ = +1, symmetry class D

D = 4,m = 2, A = T, TT ∗ = −1, symmetry class AII

D = 6,m = 3, A = C,CC∗ = −1, symmetry class C

D = 8,m = 4, A = T, TT ∗ = +1, symmetry class AI
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

Odd D case: when D is odd, D = 2m − 1 → n = m, 2n + 1 = 2m + 1, D + 1 = 2m,Γ0 = ΓD+1 =

Γ2m,the Cliffod Algebra is Cl2m+1, there is an extra Γ2m+1 left behind and there is chiral symmetry in
this case, we can define it as S = ΓD+2 = Γ2m+1 since we have omit it in the hamiltonian. what left for
us is to find the possible T and C operators. define

A = BΓ0

we can find that

AΓ∗
i = BΓ0Γ

∗
i = Γ1Γ3 · · ·Γ2m−1Γ2m+1Γ2mΓ∗

i = (−1)m+1Γ2mΓ1Γ3 · · ·Γ2m−1Γ2m+1Γ
∗
i = (−1)m+1Γ0BΓ∗

i

= (−1)m+1Γ0(−1)mΓiB = −Γ0ΓiB = (−1)1+1+m+1ΓiBΓ0 = (−1)m+1ΓiA

→ AΓ∗
iA

−1 = (−1)m+1Γi

similarly, we have

AΓ∗
0 = BΓ0Γ

∗
0 = Γ1Γ3 · · ·Γ2m−1Γ2m+1Γ2mΓ∗

2m = (−1)m+1Γ2mΓ1Γ3 · · ·Γ2m−1Γ2m+1Γ
∗
2m = (−1)m+1Γ0BΓ∗

0

= (−1)m+1Γ0(−1)mΓ0B = −(−1)m+1Γ0BΓ0 = (−1)mΓ0A

→ AΓ∗
0A

−1 = (−1)mΓ0

so if m is even, A behaves like Time reversal symmetry and if m is odd, A behaves Particle-Hole symmetry
on the hamiltonian, which is the same as the even case,

H(k) =
D∑
i=0

ri(k)Γi

besides, we have

AA∗ = BΓ0B(−Γ0) = −Γ1Γ3 · · ·Γ2m−1Γ2m+1Γ2mΓ1Γ3 · · ·Γ2m−1Γ2m+1Γ2m = (−1)1+m+1+
m(m+1)

2 = (−1)
m(m−1)

2

which is also the same the the even case, besides, since AS is another anti-linear operator which is a
different type of A and it squares to

(AS)(AS)∗ = (−1)
m(m−1)

2 +m+1 = −(−1)
m(m+1)

2

so we can directly derive the symmetry class that the hamiltonian belongs to, namely

D = 1,m = 1, A = C,CC∗ = +1, AS = T, TT ∗ = +1, symmetry class BDI

D = 3,m = 2, A = T, TT ∗ = −1, AS = C,CC∗ = +1, symmetry class DIII

D = 5,m = 3, A = C,CC∗ = −1, AS = T, TT ∗ = −1, symmetry class CII

D = 7,m = 4, A = T, TT ∗ = +1, AS = C,CC∗ = −1, symmetry class CI

thus we can find that when D goes from 0 to 7 the Dirac type hamiltonian constructed with the help of
the Clifford algebra Cl[D+1

2 ]

H(k) =
D∑
i=0

ri(k)Γi

goes around the eight symmetry classes, respectively. Thus we have work out all the diagonal symmetry
class in the specific spatial dimension D.
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

∮
.2 The Even Series

in this part, we construct the Dirac type Hamiltonian for the even series which is labeled by the
topological number 2Z. In this case, for the spatial dimension D, we consider n = [D+3

2
], which give us

extra two Dirac Gamma Metrics unused in the construction of the hamiltonian and we define

Γ0 = −iΓD+1ΓD+2ΓD+3

Even D case: when D is even, D = 2m → n = m + 1, 2n + 1 = 2m + 3, D + 1 = 2m + 1,Γ0 =

−iΓ2m+1Γ2m+2Γ2m+3,the Cliffod Algebra is Cl2m+3, there is no extra Γi left behind and there is also no
chiral symmetry in this case. what left for us is to find the possible T or C operators. we can find that

BΓ∗
i = (−1)nΓiB = (−1)m+1ΓiB

→ BΓ∗
iB

−1 = (−1)m+1Γi

similarly, we have

BΓ∗
0 = B(−iΓ2m+1Γ2m+2Γ2m+3)

∗ = iBΓ∗
2m+1Γ

∗
2m+2Γ

∗
2m+3 = i(−1)3(m+1)Γ2m+1Γ2m+2Γ2m+3B

= (−1)m − iΓ2m+1Γ2m+2Γ2m+3B = (−1)mΓ0B

→ BΓ∗
0B

−1 = (−1)mΓ0

so if m is even, B act as the Time reversal operator and if m is odd, B act as the Particle hole operator
on the hamiltonian

H(k) =
D∑
i=0

ri(k)Γi

besides, we have

BB∗ = Γ1Γ3 · · ·Γ2m−1Γ2m+1Γ2m+3Γ1Γ3 · · ·Γ2m−1Γ2m+1Γ2m+3 = (−1)
(m+1)(m+2)

2

thus we can conclude which symmetry class the hamiltonian belongs to, namely

D = 2,m = 1, B = C,CC∗ = −1, symmetry class C

D = 4,m = 2, B = T, TT ∗ = +1, symmetry class AI

D = 6,m = 3, B = C,CC∗ = +1, symmetry class D

D = 8,m = 4, B = T, TT ∗ = −1, symmetry class AII

Odd D case: when D is odd, D = 2m − 1 → n = m + 1, 2n + 1 = 2m + 3, D + 1 = 2m,Γ0 =

−iΓ2mΓ2m+1Γ2m+2,the Cliffod Algebra is Cl2m+3, there is an extra Γ2m+3 = ΓD+4 left behind and there
is also chiral symmetry in this case, so we can define S=ΓD+4 = Γ2m+3. what left for us is to find the
possible T and C operators. we can find that

BΓ∗
i = (−1)nΓiB = (−1)m+1ΓiB

→ BΓ∗
iB

−1 = (−1)m+1Γi

similarly, we have

BΓ∗
0 = B(−iΓ2mΓ2m+1Γ2m+2)

∗ = iBΓ∗
2mΓ∗

2m+1Γ
∗
2m+2 = i(−1)3(m+1)Γ2mΓ2m+1Γ2m+2B

= (−1)m − iΓ2mΓ2m+1Γ2m+2B = (−1)mΓ0B
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

→ BΓ∗
0B

−1 = (−1)mΓ0

so if m is even, B act as the Time reversal operator and if m is odd, B act as the Particle hole operator
on the hamiltonian as the even case

H(k) =
D∑
i=0

ri(k)Γi

besides, we have

BB∗ = Γ1Γ3 · · ·Γ2m−1Γ2m+1Γ2m+3Γ1Γ3 · · ·Γ2m−1Γ2m+1Γ2m+3 = (−1)
(m+1)(m+2)

2

and BS is another type of anti-linear operator which is different from B, and BS satisfying

(BS)(BS)∗ = (−1)m+1+
(m+1)(m+2)

2 = (−1)
m(m+1)

2

thus we can conclude which symmetry class the hamiltonian belongs to, namely

D = 1,m = 1, B = C,CC∗ = −1, BS = T, TT ∗ = −1, symmetry class CII

D = 3,m = 2, B = T, TT ∗ = +1, BS = C,CC∗ = −1, symmetry class CI

D = 5,m = 3, B = C,CC∗ = +1, BS = T, TT ∗ = +1, symmetry class BDI

D = 7,m = 4, B = T, TT ∗ = −1, BS = C,CC∗ = +1, symmetry class DIII

thus we can find that when D goes from 0 to 7 the Dirac type hamiltonian constructed with the help of
the Clifford algebra Cl[D+3

2 ]

H(k) =
D∑
i=0

ri(k)Γi

goes around the eight symmetry classes, respectively. Thus we have work out all the even series in the
specific spatial dimension D.

∮
.3 The first and second descendants

these two cases are simply obtained from the primary series with the same symmetry class by going
one or two dimensional lower by setting rD = 0(rD = 0, rD−1 = 0), respectively.

in the primary series, we find that for odd D

Γ0Γ1 · ΓDS = (−1)DΓ1 · ΓDΓD+1ΓD+2 = (−1)Di[
D+1

2 ] = −i
D+1

2

in the even series, we find that for odd D

Γ0Γ1 · ΓDS = −iΓD+1ΓD+2ΓD+3Γ1 · ΓDΓD+4 = −i(−1)DΓ1 · ΓDΓD+1ΓD+2ΓD+3ΓD+4 = i · i
D+3

2 = −i
D+1

2

in both case, for odd D, we have
Γ0Γ1 · ΓDS = −i

D+1
2

similarly, in the primary series, for the even D, we have

Γ0Γ1 · ΓD = (−1)DΓ1 · ΓDΓD+1 = i
D
2

in the even series, for the even D, we have

Γ0Γ1 · ΓD = −iΓD+1ΓD+2ΓD+3Γ1 · ΓD = −i(−1)DΓ1 · ΓDΓD+1ΓD+2ΓD+3 = −ii
D+2

2 = i
D
2

so, in both case, for even D, we have
Γ0Γ1 · ΓD = i

D
2

all the above discussion are summarized in the Figure(1)
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

Figure 1: the operators in different symmetry class and spatial dimensions

ℜ.3 Some comments on the above construction

in the following context, we refer to the specific choice of Dirac Metrics Γi to be the one constructed
in section (1).

in the above proof, it greatly relies on the specific construction of the Dirac metrics and the order
of these metrics. since there is SO(2n+1) degree of choosing the Dirac metrics ( the basis) and S2n+1

symmetry( the order of these metrics ), in this section, let us make some comments on the above strategy.

• there is O(n + 1) × O(n) ⊂ O(2n + 1) degree of freedom of choosing these basis so as the above
strategy still works.

the metrics B defined above is B = Γ1Γ3Γ5 · · ·Γ2n+1, which can be extended to the product of all
the real metrics but there is a restriction to the basis choice that it is either real or purely imaginary.

consider a basis transformation γi = Oi,jΓj , then γ∗i = Oi,jΓ
∗
j , since Γ∗

2m+1 = Γ2m+1 and Γ∗
2m =

−Γ2m, so if γi is real, it requires that Oi,2k = 0, if γi is purely imaginary, it requires that Oi,2k+1 = 0,
so in order to derive n+1 real basis and n purely imaginary basis, the choice of O is reduced from
O(2n+ 1) to O(n+ 1)×O(n), in this sense, B is well defined as the product of all the real metrics
and it satisfying

BγiB
−1 = (−1)nγ∗i

since if γi is real, then it should be exchange n times from the right of B to the left of B which will
give us (−1)nγiBB

−1 = (−1)nγ∗i due to the construction of B.

if γi is purely imaginary, then it should be exchange n+1 times from the right of B to the left of B
which will give us (−1)n+1γiBB

−1 = (−1)n+1(−γ∗i ) = (−1)nγ∗i

Obviously, not all the transformation will give us n+1 real basis and n purely imaginary basis, for
example, γ1 = σx, γ2 = − sin θσ3+cos θσ2, γ3 = cos θσ3+sin θσ2 is also a basis of the Clifford algebra
of Cl3, but there is no purely imaginary metrics.

• the ordering of these Dirac metrics has no influence in the above strategy.

this is to say, the choice of γ0 can be arbitrary.define A = Bγ0 with arbitrary γ0, we can fallow the
above proof with this extended B.
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

As for the primary series, in the Even D case, D = 2m→ n = m,as for any γi ̸= γ0, we have

Aγ∗i = Bγ0γ
∗
i = (−1)(n+1)/nγ0Bγ

∗
i = (−1)n(−1)(n+1)/nγ0γiB

= (−1)(−1)n(−1)(n+1)/nγiγ0B = (−1)(−1)n(−1)(n+1)/n(−1)(n+1)/nγiγ0B = (−1)n+1γiA

→ Aγ∗iA
−1 = (−1)n+1γi

but for γ0, we have that

Aγ∗0 = Bγ0γ
∗
0 = (−1)(n+1)/nγ0Bγ

∗
i = (−1)n(−1)(n+1)/nγ0γ0B

= (−1)n(−1)(n+1)/nγ0γ0B = (−1)n(−1)(n+1)/n(−1)(n+1)/nγ0γ0B = (−1)nγ0A

→ Aγ∗0A
−1 = (−1)nγ0

besides, if γ0 is chosen to be the purely imaginary:

AA∗ = Bγ0Bγ
∗
0 = Bγ0B(−γ0) = Bγ0(−γ0)(−1)n+1B = (−1)nB2

if γ0 is chosen to be the real one:

AA∗ = Bγ0Bγ
∗
0 = Bγ0B(γ0) = Bγ0γ0(−1)nB = (−1)nB2

in both cases, the result is the same

AA∗ = (−1)nB2 = (−1)n+
n(n+1)

2 = (−1)
n(n−1)

2

which is the same as the previous result which we take the specific form of Γi and ordering.

for the Odd D case in the primary series, D = 2m− 1 → n = m, which is the same as the previous
one since the Clifford algebra we considering is the same Cl2n+1.

but in this case we can choose another arbitrary one as our chiral operator S ̸= γ0, then we have

(AS)(AS)∗ = ASA∗S∗ = (−1)n+1ASSA∗ = (−1)n+1(−1)
n(n−1)

2 = −(−1)
n(n+1)

2

regardless of real or purely imaginary choice of S. which is the same as the above specific choice of
Γi and ordering.

as for the even series, for the even D=2m, n=m+1, and in this case, we can choose arbitrary
γ0 = −iγiγjγk and find that

Bγ∗i = (−1)nγiB = (−1)m+1γiB → Bγ∗iB
−1 = (−1)m+1γi

as for γ0, we have

Bγ∗0 = iBγ∗i γ
∗
j γ

∗
k = i(−1)nγiγjγkB = (−1)n−1γ0B = (−1)mγ0B

→ Bγ∗0B
−1 = (−1)mγ0

besides, we have
BB∗ = B2 = (−1)

n(n+1)
2 = (−1)

m(m+1)
2
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§3 UNIFIED TOPOLOGICAL INVARIANTS: THE WRAPPING NUMBER[? ]

which is the same as the previous result with the specific form of Γi and ordering.

for the odd D=2m-1, n=m+1, in this case, after choosing arbitrary γ0 = −iγiγjγk, we can choose
arbitrary chiral operator S ̸= γi,j,k, then we have

(BS)(BS)∗ = BSB∗S∗ = (−1)nBSSB = (−1)nB2 = (−1)n(−1)
n(n+1)

2 = (−1)
n(n−1)

2 = (−1)
m(m+1)

2

which is also the same as the previous result.

we need to notice that in this case, the choice of γ0 can also be extended to γ0 = −iγj since

Bγ∗0 = iBγ∗j = i(−1)nγjB = (−1)n−1γ0B → Bγ∗0B
−1 = (−1)n−1γ0

which means that it can also be used as the mass term generator!

In conclusion, the choice of γ0 and S can be arbitrary in this strategy as long as there is always n+1
real basis and n purely imaginary basis. In other words, there is O(n + 1) × O(n) degree of freedom for
choosing the basis, under this constrain, the ordering of these metrics does not affect the whole strategy.

there is also one thing to be clarified, that is we should ordering the other Dirac metrics to meet the
requirement that.
for even D

Γ0Γ1 · ΓD = i
D
2

for odd D
Γ0Γ1 · ΓDS = −i

D+1
2

§3 Unified Topological Invariants: The Wrapping Number[1]

ℜ.1 The degree of a map

we can consider two manifolds N and M of the same dimension D, and a map f : N →M , lLet M be
orientable with a volume form ω that is nowhere vanishing, and define

VM ≡
∫
M

ω

the integer-valued degree of the map f is defined as

degf =
1

VM

∫
N

f∗ω

where f∗ω is the pullback of the form ω by the map f, which is also a D-form on N, and this is equivalent
to the algebraic definition of the degree which read as

degf =
∑

k∈f−1(x0)

signJ(k)

where J is the Jacobian of the map f
Jf (k) = det ∂f

µ

∂kν

if M is the sphere M = SD, then we have the above formula by considering SD embedding in the
RD+1 and the volume form in SD is induced from the volume form in RD+1 which is trivially defined
as ωRD+1 = dr0 ∧ dr1 ∧ · · · ∧ drD, since the volume form in the manifold with Riemann measure g(x) is
ω =

√
detg(x)dnx, and in RD+1, the metrics is just g(x) = In since it’s Euclidean. since the metric tensor
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in RD+1 is g =
∑D

i=0 dxidxi, so the pullback of this metric tensor to SD by the map h(y)(where y is the
local coordinate in SD) is (xi = hi(y))

h∗(g) =
D∑
i=0

dhidhi =
D∑
i=0

∂hi(y)

∂yj
dyj

∂hi(y)

∂yk
dyk =

∑
j,k

(
D∑
i=0

∂hi(y)

∂yj

∂hi(y)

∂yk
)dyjdyk

which mean that the Riemann metric in SD is

g∗j,k =
D∑
i=0

∂hi(y)

∂yj

∂hi(y)

∂yk
=
∂h(y)

∂yj
· ∂h(y)
∂yk

if we choose the local coordinate in SD as (n1, n2, · · · , nD) under the map h it maps to (n0, n1, · · ·nD), so
we have

∂h(y)

∂yj
= (

∂n0

∂nj
, 0, 0, 0, · · · , 1, · · · , 0, 0) → ∂h(y)

∂yi
· ∂h(y)
∂yj

=
∂n0

∂ni

∂n0

∂nj
+ δi,j

on the other hand we have
∂n0

∂ni
=
∂
√
1−

∑D
i=1 n

i,2

∂ni
= −ni

n0
→

then we can find that

det(g∗) = det
(
1 0

0 g∗

)
and we can find that

(
1 0

0 g∗

)
=



n0 n1 n2 · · · nD

∂n0

∂n1 1 0 · · · 0
∂n0

∂n2 0 1 · · · 0

· · · · · · · · · · · · 0
∂n0

∂nD 0 0 · · · 1





n0 n1 n2 · · · nD

∂n0

∂n1 1 0 · · · 0
∂n0

∂n2 0 1 · · · 0

· · · · · · · · · · · · 0
∂n0

∂nD 0 0 · · · 1



T

= NNT

where the first row of N is (n0, n1, · · · , nD) and the (i+1)’s row of N is just ∂ni(n0, n1, · · · , nD), so the
(i+1,j+1) elements of NNT is just ∂ni(n0, n1, · · · , nD) · ∂nj (n0, n1, · · · , nD) = g∗i,j , together with the fact
that

D∑
i=0

n2
i = 1 n0 ∂n

0

∂nj
+ nj = −n0n

j

n0
+ nj = 0

which make sure the fist row of NNT is just (1, 0, 0, · · · , 0), so we have that√
det(g∗) = det(N) = det(NT ) = det(n, ∂n

∂n1

,
∂n
∂n2

, · · · , ∂n
∂nD

)

thus the volume form in SD can be expressed as

ω = det(n, ∂n
∂n1

,
∂n
∂n2

, · · · , ∂n
∂nD

)dn1 ∧ dn2 ∧ · · · ∧ dnD

= ϵi0i1···iDn
i0
∂ni1

∂n1

∂ni2

∂n2

· · · ∂n
iD

∂nD

dn1 ∧ dn2 ∧ · · · ∧ dnD

= ϵi0i1···iDn
i0
∂ni1

∂n1

∂ni2

∂n2

· · · ∂n
iD

∂nD

1

D!
ϵj1,j2··· ,jDdn

j1 ∧ dnj2 ∧ · · · ∧ dnjD

=
1

D!
det(n, ∂n

∂n1

,
∂n
∂n2

, · · · , ∂n
∂nD

)ϵj1,j2··· ,jDdn
j1 ∧ dnj2 ∧ · · · ∧ dnjD

=
1

D!
det(n, ∂n

∂nj1

,
∂n
∂nj2

, · · · , ∂n
∂njD

)dnj1 ∧ dnj2 ∧ · · · ∧ dnjD
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=
1

D!
ϵi0i1···iDn

i0
∂ni1

∂nj1

∂ni2

∂nj2

· · · ∂n
iD

∂njD

dnj1 ∧ dnj2 ∧ · · · ∧ dnjD

=
1

D!
ϵi0i1···iDn

i0dni1 ∧ dni2 ∧ · · · ∧ dniD

we express it in this form for the reason that it’s coordinate independent so as to easily derive the pullback
of ω by f to the volume tensor in N, that is

f∗ω =
1

D!
ϵi0i1···iDn

i0dni1 ∧ dni2 ∧ · · · ∧ dniD = det(n, ∂n
∂k1

,
∂n
∂k2

, · · · , ∂n
∂kD

)dk1 ∧ dk2 ∧ · · · ∧ dkD

on the other hand, we know n = r
|r| , so we have

det(n, ∂n
∂k1

,
∂n
∂k2

, · · · , ∂n
∂kD

) = det( r
|r| ,

1

|r|
∂r
∂k1

+ r
∂ 1

|r|

∂k1
,
1

|r|
∂r
∂k2

+ r
∂ 1

|r|

∂k2
, · · · , 1

|r|
∂r
∂kD

+ r
∂ 1

|r|

∂kD
)

=
1

|r|D+1
det(r, ∂r

∂k1
,
∂r
∂k2

, · · · , ∂r
∂kD

)

where we have use the fact that adding a column to another column doesn’t change the value of the
determinate. in conclusion, we have the following maps:

BZ f→ SD natural embedding→ RD+1

k f→ x = f(k)
natural embedding→ m(x)

thus we have n(k) = m(f(k))

det(n, ∂n
∂k1

,
∂n
∂k2

, · · · , ∂n
∂kD

) = Jf (k)det(m, ∂m
∂x1

,
∂m
∂x2

, · · · , ∂m
∂xD

)x=f(k)

then we know

signJf (k) = sign det(n, ∂n
∂k1

,
∂n
∂k2

, · · · , ∂n
∂kD

) = sign det(r, ∂r
∂k1

,
∂r
∂k2

, · · · , ∂r
∂kD

)

since det(m, ∂m
∂x1

, ∂m
∂x2

, · · · , ∂m
∂xD

)x=f(k) is just
√
h∗g =

√
g∗ which is positive due to the fact that the metric

in RD+1 is identity which is positive.

ℜ.2 The degree of the map from BZ to sphere

as for the Dirac model, the hamiltonian write as

H(k) =
D∑
i=0

ri(k)Γi

where these Dirac metrics are specified in the above sections for different symmetry classes and different
spatial dimension, since the flattened hamiltonian has the same eigen-states as the original one, we can
consider the flattened Hamiltonian

Q(k) =
D∑
i=0

ni(k)Γi

with ni = ri

|r| , thus for each point k in the BZ(TD), these parameters lie in the sphere SD,when k goes
around the whole BZ, these vectors will wrap around the Sphere SD, so we can use the map n to distinguish
topologically distinct hamiltonian, the topological classification of this hamiltonian is just the homotopy
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groups [BZ,SD], and the topological number is just the degree of such map n, which is called the wrapping
number, defined as

deg[n] = 1

VD

∫
BZ

1

D!
ϵi0···iDn

i0dni1 ∧ dni2 ∧ · · · ∧ dniD

=
1

VD

∫
BZ
ϵi0···iDn

i0∂1n
i1∂2n

i2 · · · ∂DniDdDk

=
1

VD

∫
BZ
ϵi0···iDr

i0
1

|r|D+1
∂1r

i1∂2r
i2 · · · ∂DriDdDk

where VD = 2π
D+1

2

Γ(D+1
2 )

is the volume of the D-Dimensional sphere. The above formula counts how many
times the map n wrap around the sphere as k go around the whole BZ.

there is an alternative way of calculating the above formula, we can pick up a fixed point n0 in the
sphere, and find out how many points ki in the BZ which is mapped to this point by n, since the map
may be wrapping around the sphere through n0 at ki in the normal direction or in the opposite direction,
this orientation is captured by the sign of the following Jocobian:

Jn(ki) = ϵi0···iDn
i0∂1n

i1∂2n
i2 · · · ∂DniD |ki

the the times of the map ni wrap around the sphere can be calculated as

deg[n] =
∑

k with n(k)=n0

signJn(k)

if we choose proper n0 that all the Jocabians are non-vanishing, so that the above sum is discrete and
finite.

ℜ.3 The winding number represented as the wrapping number

fro the chiral symmetric system in the non-trivial complex class in odd dimension or the primary
series in the odd dimension, the hamiltonian are topologically classified by the so called winding number,
in D dimension, it read as

νD =
(−1)

D−1
2 (D−1

2
)!

D!
(
i

2π
)

D+1
2

∫
Tr(q−1dq)D

where q is the off-diagonal part of the flattened hamiltonian Q =

(
0 q

q−1 0

)
when we choose the chiral

operator as σz ⊗ In, we can compute that

S(QdQ)D =

(
1 0

0 −1

)
(

(
0 q

q−1 0

)(
0 dq

dq−1 0

)
)D

=

(
1 0

0 −1

)
(

(
0 q

q−1 0

)(
0 dq

dq−1 0

)
)D

=

(
1 0

0 −1

)
(

(
qdq−1 0

0 0 q−1dq

)
)D

=

(
1 0

0 −1

)
(

(
−q−1dq 0

0 0 q−1dq

)
)D

=

(
1 0

0 −1

)(
(−1)D(q−1dq)D 0

0 0 (q−1dq)D

)
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§3 UNIFIED TOPOLOGICAL INVARIANTS: THE WRAPPING NUMBER[? ]

= −

(
(q−1dq)D 0

0 (q−1dq)D

)
thus we know tr(q−1dq)D = − 1

2
tr(S(QdQ)D), so we can write the winding number as

νD =
(−1)

D−1
2 (D−1

2
)!

D!
(
i

2π
)

D+1
2

∫
Tr[−1

2
tr(S(QdQ)D)] = (−1)

D+1
2

(D−1
2

)!

2×D!
(
i

2π
)

D+1
2

∫
tr(S(QdQ)D)

on the other hand, since we know that (QdQ)2 = QdQQdQ = −QQdQdQ = −(dQ)2, thus we have
(QdQ)D = QdQ(QdQ)2×

D−1
2 = (−1)

D−1
2 QdQ(dQ)D−1 = (−1)

D−1
2 Q(dQ)D thus we can write the winding

number as

νD = (−1)
D+1

2
(D−1

2
)!

2×D!
(
i

2π
)

D+1
2

∫
(−1)

D−1
2 tr(SQ(dQ)D)

= (−1)
D+1

2 (−1)
1

D!

(D−1
2

)!

2π
D+1

2

(− i

2
)

D+1
2

∫
tr(SQ(dQ)D)

= (−1)
D+1

2 (−1)
1

VDD!
(− i

2
)

D+1
2

∫
tr(SQ(dQ)D)

since we know that Q =
∑D

i=0 n
iΓi,thus we can express the above winding number as

tr(SQ(dQ)D) = tr(SΓi0Γi1 · · ·ΓiD)n
i0dni1 ∧ · · · ∧ dniD

= tr(SΓ0Γ1 · · ·ΓD)ϵi0i1···iDn
i0dni1 ∧ · · · ∧ dniD

= −i
D+1

2 tr(I)ϵi0i1···iDni0dni1 ∧ · · · ∧ dniD

thus the winding number is represented as

νD = (−1)
D+1

2 (−1)
1

VDD!
(− i

2
)

D+1
2

∫
−i

D+1
2 tr(I)ϵi0i1···iDni0dni1 ∧ · · · ∧ dniD

= (−1)
D+1

2 tr(I)(1
2
)

D+1
2

1

VD

∫
1

D!
ϵi0i1···iDn

i0dni1 ∧ · · · ∧ dniD

= (−1)
D+1

2 (
1

2
)

D+1
2 tr(I)deg[n]

we know that the dimension of the Dirac metrics is 2n, thus tr(I) = 2n, for the complex series and the
primary series, we know that n = [D+1

2
] = D+1

2
since D is odd for winding number, so

νD = (−1)
D+1

2 (
1

2
)

D+1
2 2

D+1
2 deg[n] = (−1)

D+1
2 deg[n] (1)

for the even series, we know that n = [D+3
2

] = D+3
2

, so

νD = (−1)
D+1

2 (
1

2
)

D+1
2 2

D+3
2 deg[n] = (−1)

D+1
2 2deg[n] (2)

this is slightly different from the results derived in the original paper[1] by a factor of (−1)
D+1

2 , since this
factor is either +1 or -1 and it’s a global factor, which will not change the classification of topological
distinct phases. so we can clarify here this extra factor can be removed if we slightly change the definition
of the topological invariants.

ℜ.4 The Chern number represented as the wrapping number

as for the Chern number, defined through the berry curvature can be represented as [3]

Chn=D
2
=

1

n!
(
i

2π
)n
∫

tr(Fn)
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in the following, we prove in the flattened hamiltonian, this can be expressed as

−1

22n+1

1

n!
(
i

2π
)n
∫

tr(Q(dQ)2n)

which is also proposed in the article[3].
since Aα,β = ⟨uα(k)|d|uβ(k)⟩ = ⟨uα(k)|∂ki

|uβ(k)⟩dki so we have

Fα,β = dAα,β + (A ∧A)α,β

= ∂kj
(⟨uα(k)|∂ki

|uβ(k)⟩)dkj ∧ dki + ⟨uα(k)|∂ki
|uγ(k)⟩⟨uγ(k)|∂kj

|uβ(k)⟩dki ∧ dkj
= (⟨∂kj

uα(k)|∂ki
|uβ(k)⟩)dkj ∧ dki + (⟨uα(k)|∂kj

∂ki
|uβ(k)⟩)dkj ∧ dki + ⟨uα(k)|∂ki

|uγ(k)⟩⟨uγ(k)|∂kj
|uβ(k)⟩dki ∧ dkj

= (⟨∂kj
uα(k)|∂ki

|uβ(k)⟩)dkj ∧ dki + ⟨uα(k)|∂ki
|uγ(k)⟩⟨uγ(k)|∂kj

|uβ(k)⟩dki ∧ dkj

we can find that

tr(F) = (⟨∂kj
uα(k)|∂ki

|uα(k)⟩)dkj ∧ dki + ⟨uα(k)|∂ki
|uγ(k)⟩⟨uγ(k)|∂kj

|uα(k)⟩dki ∧ dkj
= (⟨∂kj

uα(k)|∂ki
|uα(k)⟩)dkj ∧ dki

= (⟨∂k1
uα(k)|∂k2

|uα(k)⟩ − ⟨∂k2
uα(k)|∂k1

|uα(k)⟩)dk1 ∧ dk2

since the second term is vanishing due to the fact that ⟨uα(k)|∂ki
|uγ(k)⟩⟨uγ(k)|∂kj

|uα(k)⟩ is symmetric in
i, j

⟨uα(k)|∂ki
|uγ(k)⟩⟨uγ(k)|∂kj

|uα(k)⟩ = ⟨uα(k)|∂kj
|uγ(k)⟩⟨uγ(k)|∂ki

|uα(k)⟩

since α, γ is the summing indicator. besides dki ∧ dkj is anti-symmetric in i, j.
use the expression for the berry curvature, we can find that

tr(Fn) = (⟨∂ki1
uα(k)|∂kj1

|uη1(k)⟩)dki1 ∧ dkj1 + ⟨uα(k)|∂ki1
|uγ1(k)⟩⟨uγ1(k)|∂kj1

|uη1(k)⟩dki1 ∧ dkj1
∧(⟨∂ki2

uη1(k)|∂kj2
|uη2(k)⟩)dki2 ∧ dkj2 + ⟨uη1(k)|∂ki2

|uγ2(k)⟩⟨uγ2(k)|∂kj2
|uη2(k)⟩dki2 ∧ dkj2

∧ · · ·

∧(⟨∂ki2
uηn−1(k)|∂kjn

|uα(k)⟩)dkin ∧ dkjn + ⟨uηn−1(k)|∂kin
|uγn(k)⟩⟨uγn(k)|∂kjn

|uα(k)⟩dkin ∧ dkjn

if we write Fα,β
in,jn

= (⟨∂kin
uα(k)|∂kjn

|uβ(k)⟩ + ⟨uα(k)|∂kin
|uγ(k)⟩⟨uγ(k)|∂kjn

|uβ(k)⟩), the above formula
means that

tr(Fn) = Fα,β1

i1,j1
F β1,β2

i2,j2
· · ·F βn−1,α

in,jn
dki1 ∧ dkj1 ∧ dki1 ∧ dkj1 ∧ · · · ∧ dkin ∧ dkjn

= Fα,β1

i1,j1
F β1,β2

i2,j2
· · ·F βn−1,α

in,jn
ϵi1,j1,i2,j2··· ,in,jndk1 ∧ dk2 ∧ dk3 ∧ dk4 ∧ · · · ∧ dk2n−1 ∧ dk2n

= (
∑

σ∈S2n

(−1)σFα,β1

σ(1),σ(2)F
β1,β2

σ(3),σ(4) · · ·F
βn−1,α

σ(2n−1),σ(2n))dk1 ∧ dk2 ∧ dk3 ∧ dk4 ∧ · · · ∧ dk2n−1 ∧ dk2n

= Â(Fα,β1

1,2 F β1,β2

3,4 · · ·F βn−1,α
2n−1,2n)dk1 ∧ dk2 ∧ dk3 ∧ dk4 ∧ · · · ∧ dk2n−1 ∧ dk2n

where the Â represent the anti-symmetric operator of 2n elements. in the flattened hamiltonian, we know
that Q = 1− 2P = 1− 2|uα(k)⟩⟨uα(k)|, so we have dQ = −2dP = −2∂ki

(|uα(k)⟩⟨uα(k)|)dki, thus we have

Q(dQ)2n = (1− 2P )(−2∂ki1
P )(−2∂ki2

P ) · · · (−2∂ki2n
P )dki1 ∧ dki2 ∧ · · · ∧ dki2n

= (−2)2n(1− 2P )∂ki1
P∂ki2

P · · · ∂ki2n
Pϵi1,i2,··· ,i2ndk1 ∧ dk2 ∧ · · · dk2n

= (−2)2n(1− 2P )Â(∂1P∂2P · · · ∂2nP )dk1 ∧ dk2 ∧ · · · dk2n
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= ((−2)2nÂ(∂1P∂2P · · · ∂2nP ) + (−2)2n+1PÂ(∂1P∂2P · · · ∂2nP ))dk1 ∧ dk2 ∧ · · · dk2n

on the other hand, we have

tr[Â(∂1P∂2P · · · ∂2nP )]

= Âtr[∂1P∂2P · · · ∂2nP ]

= Âtr[∂2P · · · ∂2nP∂1P ]

= Âtr[∂σ(1)P · · · ∂σ(2n−1)P∂σ(2n)P ] σ = (1, 2, 3, · · · , 2n) ∈ S2n

= (−1)σtr[Â(∂1P∂2P · · · ∂2nP )]

= (−1)2n−1tr[Â(∂1P∂2P · · · ∂2nP )]

= −tr[Â(∂1P∂2P · · · ∂2nP )]

→ tr[Â(∂1P∂2P · · · ∂2nP )] = 0

since then, we have

tr(Q(dQ)2n) = (−2)2n+1tr[PÂ(∂1P∂2P · · · ∂2nP )]dk1 ∧ dk2 ∧ · · · dk2n

so in order to prove

Chn=D
2
=

1

n!
(
i

2π
)n
∫

tr(Fn) =
−1

22n+1

1

n!
(
i

2π
)n
∫

tr(Q(dQ)2n)

we only need to prove that

Â(Fα,β1

1,2 F β1,β2

3,4 · · ·F βn−1,α
2n−1,2n) = tr[PÂ(∂1P∂2P · · · ∂2nP )] = Âtr[(P∂1P∂2P · · · ∂2nP )]

in the following, we prove the above formula

tr[(P∂1P∂2P · · · ∂2nP )] = ⟨uα|∂1(|uβ1⟩⟨uβ1 |)∂2(|uβ2⟩⟨uβ2 |) · · · ∂2n(|uβ2n⟩⟨uβ2n |)|uα⟩

= ⟨uα|(|∂1uβ1⟩⟨uβ1 |+ |uβ1⟩⟨∂1uβ1 |)(|∂2uβ2⟩⟨uβ2 |+ |uβ2⟩⟨∂2uβ2 |) · · · (|∂2nuβ2n⟩⟨uβ2n |+ |uβ2n⟩⟨∂2nuβ2n |)|uα⟩

= (⟨uα|∂1|uβ1⟩⟨uβ1 |+ δα,β1⟨∂1uβ1 |)(|∂2uβ2⟩⟨uβ2 |+ |uβ2⟩⟨∂2uβ2 |) · · · (|∂2nuβ2n⟩⟨uβ2n |+ |uβ2n⟩⟨∂2nuβ2n |)|uα⟩

= (⟨uα|∂1|uβ1⟩⟨uβ1 ||∂2uβ2⟩⟨uβ2 |+ ⟨uα|∂1|uβ1⟩δβ1,β2⟨∂2uβ2 |+ ⟨∂1uα||∂2uβ2⟩⟨uβ2 |+ ⟨∂1uα||uβ2⟩⟨∂2uβ2 |)∂3P · · · ∂2nP |uα⟩

= (⟨uα|∂1|uβ1⟩⟨uβ1 ||∂2uβ2⟩+ ⟨∂1uα||∂2uβ2⟩)⟨uβ2 |∂3P · · · ∂2nP |uα⟩

= Fα,β2

1,2 ⟨uβ2 |∂3P · · · ∂2nP |uα⟩

= Fα,β2

1,2 F β2,β4

3,4 ⟨uβ4 |∂5P · · · ∂2nP |uα⟩

= Fα,β2

1,2 F β2,β4

3,4 · · ·F β2n−2,β2n

2n−1,2n ⟨uβ4 ||uα⟩

= Fα,β2

1,2 F β2,β4

3,4 · · ·F β2n−2,β2n

2n−1,2n δ2n,α

= Fα,β2

1,2 F β2,β4

3,4 · · ·F β2n−2,α
2n−1,2n

= Fα,β1

1,2 F β1,β2

3,4 · · ·F βn−1,α
2n−1,2n

since the βi is summing indicator represent the occupied bands, and in the above, we have used that

⟨uα|∂1|uβ1⟩δβ1,β2⟨∂2uβ2 |+ ⟨∂1uα||uβ2⟩⟨∂2uβ2 | = ∂1(⟨uα|uβ2⟩)⟨∂2uβ2 | = 0

thus we have proved the equivalence.
so in the dimension D, we can write the Chern number as

ChD =
−1

2D+1

1
D
2
!
(
i

2π
)

D
2

∫
tr[Q(dQ)D]
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=
1

VD

2π
D+1

2

Γ(D+1
2

)

−1

2D+1

1
D
2
!
(
i

2π
)

D
2

∫
tr[Q(dQ)D]

= − 1

VDD!
(
i

2
)

D
2

∫
tr[Q(dQ)D]

= (−1)
D−2

2
1

VDD!
(− i

2
)

D
2

∫
tr[Q(dQ)D]

in the Dirac model, we know that

tr[Q(dQ)D = tr(Γi0Γi1 · · ·ΓiD)n
i0dni1 ∧ · · · ∧ dniD

= tr(Γ0Γ1 · · ·ΓD)ϵi0i1···iDn
i0dni1 ∧ · · · ∧ dniD

= i
D
2 tr(I)ϵi0i1···iDni0dni1 ∧ · · · ∧ dniD

thus the Chern number is just

ChD = (−1)
D−2

2 (− i

2
)

D
2 i

D
2 tr(I)deg[n]

= (−1)
D−2

2 (
1

2
)

D
2 tr(I)deg[n]

for the primary series and the complex class, we know n = [D+1
2

] = D
2

, so tr(I) = 2
D
2 , thus we have the

expression for the Chern number
ChD = (−1)

D−2
2 deg[n]

for the even series, we know n = [D+1
2

] = D
2
+ 1, thus we have

ChD = (−1)
D−2

2 2deg[n]

these results are also slightly different from that one in the paper [1] by a factor (−1)
D−2

2 , which I argue
that it can be removed since it’s a global factor equals to ±1, which will not affect the classification.

ℜ.5 The First Descendant Z2 invariants represented as the wrapping number

for the first descendant, since they belongs to the real classes, we have followed the strategy by
imposing the parity on n by

n(k) = Pn(−k) P = diag{+1,−1,−1,−1 · · · ,−1}

for the first Descendant for class X in D dimension, it can be derived as primary series for class X in D+1
dimension by imposing nD+1(k) = 0, although this can not be straightforward derived since they have the
same symmetry, the only difference is the dimension of the base manifold k.

we can think of it by considering (k1, k2, ·, kD) ≡ (k1, k2, ·, kD, kD+1 = 0) in the D+1 dimensional
primary series in the same symmetry class. since under image n(k1, k2, ·, kD) in the D+1 dimensional is
D dimensional sphere in D+1 dimension, which can always be continuously deformed to the case where
nD+1(k) = 0 for the hamiltonian

∑D+1
i=0 niΓi parameterized by n(k1, k2, ·, kD, kD+1) .

we consider two hamiltonians in the first descendants,n1(k), n2(k), then the path which connects this
two hamiltonian in the D+1 dimension n1→2(k, t)

n1→2(k, 0) = n1(k), n1→2(k, π) = n2(k)
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can be viewed as an elements in the primary series class hamiltonian, if we regard the extra time factor t
as extra dimension kD+1 and imposing the required parity constrain

n1→2(k, t) = Pn1→2(−k,−t) − π < t ≤ 0

then we can define
deg2[n1→2] ≡ deg[n1→2] mod 2

thus we declare two hamiltonians n1(k), n2(k) are topologically equal if deg2[n1→2] = 0 and distinct if
deg2[n1→2] = 1.

there is one thing for us to clarify, deg2[n1→2] is independent of the chosen path. since the sign of
Jacobian is signJn ≡ 1 mod 2, and we can chose a reference point in SD+1, namely the south pole
n0 = (−1, 0, 0, · · · , 0), if (k, t) maps to the south pole, so does (−k,−t), since n1→2(k, t) = Pn1→2(−k,−t),
so if (k, t) ̸= (−k,−t), it will give us two points which is zero in the sense of mod 2, thus we only need
to consider the high symmetry points in the BZ, we donated it as (k̄, 0) and (k̄, π), where k̄ is the high
symmetric point of the D dimensional BZ.

thus, we have

deg2[n1→2] =
∑

(k,t),n1→2(k,t)=n0

1 mod 2

=
∑
k̄,t̄

1− n0
1→2(k̄, t̄)
2

mod 2

=
∑

k̄

1− n0
1(k̄)

2
+

1− n0
2(k̄)

2
mod 2

which only depends on n1(k), n2(k).
it’s more convenient to use the parity instead of 0 and 1, that is

P1[n1, n2] = (−1)deg2[n1→2]

if we choose a reference map n1(k) = (1, 0, 0 · · · , 0), then we define the parity of map n with respect to
this parity:

P1[n] = P1[nref , n] = (−1)
∑

k̄
1−n0(k̄)

2 =
∏

k̄

n0(k̄)

so for the map n(k), we can define

deg2[n] =
∑

k̄

1− n0(k̄)
2

where n is the map TD → SD by setting nD+1 = 0,and then we have

deg2[n1→2] = deg[n1] + deg[n2]

thus n1(k), n2(k) are topological equivalent if

deg2[n1] = deg2[n2]

and topological distinct if
deg2[n1] ̸= deg2[n2]

and we can find that the parity of n is just

P1[n] = (−1)deg2[n]
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ℜ.6 The Second Descendant Z2 invariants represented as the wrapping number

for the Second Descendant in symmetry class X in D dimension, we can consider it as reduced from
the the same class X from the primary series in D+2 dimension by imposing nD+2 = nD+1 = 0, consider
the hamiltonian defined in dimension D,namely, n1(k), n2(k). then following the above strategy, we can
define the path connecting this two hamiltonian n1→2(k, s)

n1→2(k, 0) = n1(k) n1→2(k, π) = n2(k)

in which n1→2(k, s) = Pn1→2(−k,−s), this path define a map: TD+1 → SD+2, which is an elements in the
first descendants in the symmetry class X. thus we can define

P2[n1, n2] ≡ P1[n1→2]

which constitutes now a relative invariant between the two second descendant Hamiltonians. with the
same argument above, this quantity is independent of path chosen, which only rely on n1(k), n2(k).

after chosen a reference hamiltonian nref = (1, 0, 0, · · · ), we can define the parity of the map n

P2[n] = P2[nref , n] =
∏

k̄

n0(k̄) = (−1)deg2[n]

where n is the map TD → SD by setting nD+2 = nD+1 = 0

§4 Real Space Universal topological Marker[2]

ℜ.1 The real space representation of the wrapping number

in the above, we have derived the Unified topological invariants, the wrapping number, namely

deg[n] = 1

VD

∫
BZ

1

D!
ϵi0···iDn

i0dni1 ∧ dni2 ∧ · · · ∧ dniD

=
1

VD

∫
BZ
ϵi0···iDn

i0∂1n
i1∂2n

i2 · · · ∂DniDdDk

=
1

VD

∫
BZ
ϵi0···iDr

i0
1

|r|D+1
∂1r

i1∂2r
i2 · · · ∂DriDdDk

suppose the Dirac metrics used in the hamiltonian is {Γ0,Γ1, · · · ,ΓD} and left {ΓD+1,ΓD+2, · · · ,Γ2n}
unused , we can define

W = ΓD+1,ΓD+2, · · · ,Γ2n

then we can find that

tr[WQ(dQ)D] = tr[ΓD+1,ΓD+2, · · · ,Γ2nΓi0 ,Γi1 , · · · ,ΓiD ]n
i0∂j1n

i1∂j2n
i2 · · · ∂jDniDdkj1 ∧ dkj2 ∧ · · · ∧ dkjD

= ϵi0,i1,··· ,iD2
ninni0∂j1n

i1∂j2n
i2 · · · ∂jDniDϵj1,j2,··· ,jDdk1 ∧ dk2 ∧ · · · ∧ dkD

= 2ninD!ϵi0,i1,··· ,iDn
i0∂1n

i1∂2n
i2 · · · ∂DniDdDk

so we have

ϵi0,i1,··· ,iDn
i0∂1n

i1∂2n
i2 · · · ∂DniDdDk

=
1

2ninD!
tr[WQ(dQ)D]

=
1

2nin
tr[WQ∂1Q∂2Q · · · ∂DQ]dDk
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since then we can write the wrapping number as

deg[n] = (2π)D

VD2nin

∫
dDk
(2π)D

tr[WQ∂1Q∂2Q · · · ∂DQ] (3)

on the other hand, we can write the hamiltonian Q in terms of the projection of the valence band p =∑
n,En<EF

|n⟩⟨n| and conduction band q = p =
∑

m,Em>EF
|m⟩⟨m|

Q = q − p q + p = I

in this way we can write the above formula to the real space one using the strategy that

∂j → −iXj
dDk

(2π)D
→ 1

LD

in the following, we work out the explicit form of the real space formula, in the odd D case, we have

WQ∂1Q∂2Q · · · ∂DQ

=W (q − p)∂1Q∂2Q · · · ∂DQ

=Wq∂1Q∂2Q · · · ∂DQ−Wp∂1Q∂2Q · · · ∂DQ

=2D(−1)
D+1

2 Wq∂1p∂2q · · · ∂Dp− 2D(−1)
D−1

2 Wp∂1q∂2p · · · ∂Dq

=(−1)
D+1

2 2DW (q∂1p∂2q · · · ∂Dp+Wp∂1q∂2p · · · ∂Dq)

=(−1)
D+1

2 2D
∑

m1∼mD+1
2

∑
n1∼nD+1

2

W{(|m1⟩⟨m1|)∂1(|n1⟩⟨n1|)∂2(|m2⟩⟨m2|)∂3(|n2⟩⟨n2| · · · ∂D(|nD+1
2
⟩⟨nD+1

2
|)) + (m↔ n)}

=(−1)
D+1

2 2D
∑

m1∼mD+1
2

∑
n1∼nD+1

2

W{|m1⟩⟨m1|∂1|n1⟩⟨n1|∂2|m2⟩⟨m2|∂3|n2⟩⟨n2| · · · ∂D|nD+1
2
⟩⟨nD+1

2
|+ (m↔ n)}

since ∂jQ = 2∂jq = −2∂jp, where we use choose the form of ∂jQ accordingly so as to make sure the
occurrence of p and q alternative.

then use the following identity

⟨m|∂j |n⟩ = −i⟨Ψm|Xj |Ψn⟩ (4)

where
⟨r|Ψm(k)⟩ = Ψm,k(r) = um,k(r)e

ik·r = ⟨r|m(k)⟩eik·r

is the full wave function.
in order to prove this formula, we need to find the real space representation of the operator ∂p, since

we know p̂ = −i∂x in the real space representation, namely ⟨x|p̂|ψ⟩ = −i∂xψ(x) from the fact that p̂ is
the generator of the translation operator in real space

T̂a|r⟩ = |r + a⟩ T̂ϵ = I − iϵp̂

since

⟨x|T̂ϵ|ψ⟩ = ⟨T̂ †x||ψ⟩ = ⟨x− ϵ|ψ⟩ = ψ(x− ϵ)

= e−i(−iϵ∂x)ψ(x) = (1− iϵ(−i∂x))⟨x|ψ⟩ ≡ ⟨x|(1− iϵp̂)|ψ⟩

→ −i∂xψ(x) = ⟨x|p̂|ψ⟩
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using the same strategy, we can find that x̂ = i∂p in the momentum space representation of the operator
x̂ in the sense

i∂pψ(p) = ⟨p|x̂|ψ⟩

thus we can prove the formula (4).

⟨m|∂j |n⟩ = −i⟨m|Xj |n⟩ = −i⟨Ψm|Xj |Ψn⟩

the second equality is due to the fact that Xj is diagonal in the real space representation.so that the extra
phases factor can be cancelled since we evaluate it in the same point k.

since then, we have:

WQ∂1Q∂2Q · · · ∂DQ

=(−1)
D+1

2 2D
∑

m1∼mD+1
2

∑
n1∼nD+1

2

W{|m1⟩⟨m1|∂1|n1⟩⟨n1|∂2|m2⟩⟨m2|∂3|n2⟩⟨n2| · · · ∂D|nD+1
2
⟩⟨nD+1

2
|+ (m↔ n)}

=(−1)
D+1

2 2D
∑

m1∼mD+1
2

∑
n1∼nD+1

2

W{|Ψm1
⟩⟨Ψm1

| − iX1|Ψn1
⟩⟨Ψn1

| − iX2|Ψm2
⟩⟨Ψm2

| − iX3|Ψn2
⟩⟨Ψn2

| · · ·

· · · − iXD|ΨnD+1
2

⟩⟨ΨnD+1
2

|+ (m↔ n)}

=i2D
∑

m1∼mD+1
2

∑
n1∼nD+1

2

W{|Ψm1
⟩⟨Ψm1

|X1|Ψn1
⟩⟨Ψn1

|X2|Ψm2
⟩⟨Ψm2

|X3|Ψn2
⟩⟨Ψn2

| · · ·

· · ·XD|ΨnD+1
2

⟩⟨ΨnD+1
2

|+ (m↔ n)}

thus we have∫
dDk
(2π)D

tr[WQ∂1Q∂2Q · · · ∂DQ]

= i2D
∫

dDk
(2π)D

tr[
∑

m1∼mD+1
2

∑
n1∼nD+1

2

W{|Ψm1
⟩⟨Ψm1

|X1|Ψn1
⟩⟨Ψn1

|X2|Ψm2
⟩⟨Ψm2

|X3|Ψn2
⟩⟨Ψn2

| · · ·

· · ·XD|ΨnD+1
2

⟩⟨ΨnD+1
2

|+ (m↔ n)}]

= i2D
∫

dDk
(2π)D

tr[W{
∑
m1

|Ψm1
⟩⟨Ψm1

|X1

∑
n1

|Ψn1
⟩⟨Ψn1

|X2

∑
m2

|Ψm2
⟩⟨Ψm2

|X3

∑
n2

|Ψn2
⟩⟨Ψn2

| · · ·

· · ·XD

∑
nD+1

2

|ΨnD+1
2

⟩⟨ΨnD+1
2

|+ (m↔ n)}]

= i2Dtr[W{
∫

dDk
(2π)D

∑
m1

|Ψm1
⟩⟨Ψm1

|X1

∫
dDk
(2π)D

∑
n1

|Ψn1
⟩⟨Ψn1

|X2

∫
dDk
(2π)D

∑
m2

|Ψm2
⟩⟨Ψm2

|X3∫
dDk
(2π)D

∑
n2

|Ψn2
⟩⟨Ψn2

| · · ·XD

∫
dDk
(2π)D

∑
nD+1

2

|ΨnD+1
2

⟩⟨ΨnD+1
2

|+ (m↔ n)}]

=
1

LD
i2Dtr[WQX1PX2Q · · ·QXDP +WPX1QX2P · · ·PXDQ]

where the factor 1
LD comes from the correspondence

∫
dDk

(2π)D
→ 1

LD which one is the average over the first
BZ in momentum space and the other one is average over the unite cell in real space. besides,

Q =

∫
dDk
(2π)D

∑
m

|Ψm⟩⟨Ψm| =
∑
m

|Em⟩⟨Em| P =

∫
dDk
(2π)D

∑
n

|Ψn⟩⟨Ψn| =
∑
n

|En⟩⟨En|
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to represent the projection to the unoccupied (occupied) energy state of the lattice hamiltonian since they
are diagonal in the band level. and sum over k is just the whole tr of the big lattice hamiltonian.

in the above, we have used the fact that[4]

⟨Ψn,k|x̂|Ψn′,k′⟩ = iδn,n′δk,k′
∂

∂k
+ δk,k′iN

∫
ei(k

′−k)xu∗n,k(x)
∂

∂k
un′,k′(x)dx

so that if k ̸= k′, the extra matrix elements we have added is equal to zero.
the above formula can be derived from the following process

⟨Ψn,k|x̂|Ψn′,k′⟩ =
∫
dx⟨Ψn,k|x̂|x⟩⟨x||Ψn′,k′⟩

=

∫
dxxu∗n,k(x)e

−ikxun′,k′(x)eik
′x

=

∫
dxi

∂

∂k
(e−ix(k−k′))u∗n,k(x)un′,k′(x)

= i
∂

∂k
(

∫
dxe−ix(k−k′)u∗n,k(x)un′,k′(x))− i

∫
dxe−ix(k−k′) ∂

∂k
(u∗n,k(x))un′,k′(x)

= i
∂

∂k
δn,n′δk,k′ − i

∫
dxeix(k

′−k) ∂

∂k
(u∗n,k(x))un′,k′(x)

and the second term is proportional to δk,k′ since ∂
∂k
(u∗n,k(x))un′,k′(x) can be think as independent of x

due to it’s periodic with periodicity lattice constant which is a small scale in the thermal dynamic limit.
for the case D is even, we have

WQ∂1Q∂2Q · · · ∂DQ

=W (q − p)∂1Q∂2Q · · · ∂DQ

=Wq∂1Q∂2Q · · · ∂DQ−Wp∂1Q∂2Q · · · ∂DQ

=2D(−1)
D
2 Wq∂1p∂2q · · · ∂Dq − 2D(−1)

D
2 Wp∂1q∂2p · · · ∂Dp

=(−1)
D
2 2DW (q∂1p∂2q · · · ∂Dq −Wp∂1q∂2p · · · ∂Dp)

=(−1)
D
2 2D

∑
m1∼mD

2
+1

∑
n1∼nD

2

W{(|m1⟩⟨m1|)∂1(|n1⟩⟨n1|)∂2(|m2⟩⟨m2|)∂3(|n2⟩⟨n2| · · · ∂D(|mD
2 +1⟩⟨mD

2 +1|))− (m↔ n)}

=(−1)
D
2 2D

∑
m1∼mD

2
+1

∑
n1∼nD

2

W{|m1⟩⟨m1|∂1|n1⟩⟨n1|∂2|m2⟩⟨m2|∂3|n2⟩⟨n2| · · · ∂D|mD
2 +1⟩⟨mD

2 +1| − (m↔ n)}

=(−1)
D
2 2D

∑
m1∼mD

2
+1

∑
n1∼nD

2

W{|Ψm1
⟩⟨Ψm1

| − iX1|Ψn1
⟩⟨Ψn1

| − iX2|Ψm2
⟩⟨Ψm2

| − iX3|Ψn2
⟩⟨Ψn2

| · · ·

· · · − iXD|ΨmD
2

+1
⟩⟨ΨmD

2
+1
| − (m↔ n)}

=2D
∑

m1∼mD
2

+1

∑
n1∼nD

2

W{|Ψm1
⟩⟨Ψm1

|X1|Ψn1
⟩⟨Ψn1

|X2|Ψm2
⟩⟨Ψm2

|X3|Ψn2
⟩⟨Ψn2

| · · ·

· · ·XD|ΨmD
2

+1
⟩⟨ΨmD

2
+1
| − (m↔ n)}

thus we have∫
dDk
(2π)D

tr[WQ∂1Q∂2Q · · · ∂DQ]

= 2D
∫

dDk
(2π)D

tr[
∑

m1∼mD
2

+1

∑
n1∼nD

2

W{|Ψm1
⟩⟨Ψm1

|X1|Ψn1
⟩⟨Ψn1

|X2|Ψm2
⟩⟨Ψm2

|X3|Ψn2
⟩⟨Ψn2

| · · ·
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· · ·XD|ΨmD
2

+1
⟩⟨ΨmD

2
+1
| − (m↔ n)}]

= 2D
∫

dDk
(2π)D

tr[W{
∑
m1

|Ψm1
⟩⟨Ψm1

|X1

∑
n1

|Ψn1
⟩⟨Ψn1

|X2

∑
m2

|Ψm2
⟩⟨Ψm2

|X3

∑
n2

|Ψn2
⟩⟨Ψn2

| · · ·

· · ·XD

∑
mD

2
+1

|ΨmD
2

+1
⟩⟨ΨmD

2
+1
| − (m↔ n)}]

= 2Dtr[W{
∫

dDk
(2π)D

∑
m1

|Ψm1
⟩⟨Ψm1

|X1

∫
dDk
(2π)D

∑
n1

|Ψn1
⟩⟨Ψn1

|X2

∫
dDk
(2π)D

∑
m2

|Ψm2
⟩⟨Ψm2

|X3∫
dDk
(2π)D

∑
n2

|Ψn2
⟩⟨Ψn2

| · · · · · ·XD

∫
dDk
(2π)D

∑
mD

2
+1

|ΨmD
2

+1
⟩⟨ΨmD

2
+1
| − (m↔ n)}]

=
1

LD
2Dtr[WQX1PX2Q · · ·PXDQ−WPX1QX2P · · ·QXDP ]

so the wrapping number can be written as

deg[n] = 1

LD

(2π)D

VD2nin
i2Dtr[WQX1PX2Q · · ·QXDP +WPX1QX2P · · ·PXDQ] =

1

LD
tr[Ĉ] (5)

for the case D is odd, and can be written as

deg[n] = 1

LD

(2π)D

VD2nin
2Dtr[WQX1PX2Q · · ·PXDQ−WPX1QX2P · · ·QXDP ] =

1

LD
tr[Ĉ] (6)

for the case D is even, where Ĉ is named as the topological operator. using the topological operator, we
can define the local and non-local topological marker as

C(r) ≡ ⟨r|Ĉ|r⟩

C(r, r′) ≡ ⟨r|Ĉ|r′⟩

so in three dimension, the topological operator can be written as

Ĉ3 = i
(2π)D

VD

2D
1

2nin
W (QXPY QZP + PXQY PZQ) = i

32π

2nin
W (QXPY QZP + PXQY PZQ)

where n and W depends on different symmetry class.
in two dimension, the topological operator can be written as

Ĉ2 =
(2π)D

VD

2D
1

2nin
W (QXPY Q− PXQY P ) =

4π

2nin
W (QXPY Q− PXQY P )

similarly, n and W depends on different symmetry class.
in one dimension, the topological operator can be written as

Ĉ1 = i
(2π)D

VD

2D
1

2nin
W (QXP + PXQ) = i

2

2nin
W (QXP + PXQ)

in the following, we make some comments on the above results, we should notice that the factor 2nin

comes from the product of all the Dirac matrices

tr[ΓD+1,ΓD+2, · · · ,Γ2nΓi0 ,Γi1 , · · · ,ΓiD ]

so in practical calculation, we should organize the order of the Gamma matrices in W such that the above
formula holds, or equivalently, replace the factor 2nin with tr[ΓD+1,ΓD+2, · · · ,Γ2nΓ0,Γ1, · · · ,ΓD], since
2n comes from the dimension of the Gamma matrices, so we should only replace in with the scalar factor
of ΓD+1,ΓD+2, · · · ,Γ2nΓ0,Γ1, · · · ,ΓD =WΓ0,Γ1, · · · ,ΓD.
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on the other hand, in the above formula, we have used the formula

⟨m|∂j |n⟩ = −i⟨Ψm|Xj |Ψn⟩ (7)

which is valid for the infinity and continuous real space, if we use the finite lattice model with the periodic
boundary condition, we should use the exponential position operator, namely

⟨m|∂j |n⟩ =
L

2π
⟨m|ei 2π

L Xj |n⟩ (8)

since we know

⟨m|∂j |n⟩ = ⟨m| |nk+δk⟩ − |nk⟩
δk

=
1

δk
⟨m|e∂k·δk|n⟩

=
1

δk
⟨m|eiXj ·δk|n⟩ = L

2π
⟨m|ei 2π

L Xj |n⟩

= ⟨m| L
2π
ei

2π
L Xj |n⟩

L
2π
ei

2π
L Xj is called the exponential position operator, if we use this one, the wrapping number should

modified as

deg[n] → 1

(−i)D
deg[n]

deg[n] = iD+1 1

LD

(2π)D

VD2nin
2Dtr[WQX1PX2Q · · ·QXDP +WPX1QX2P · · ·PXDQ] =

1

LD
tr[Ĉ] (9)

for the case D is odd, and can be written as

deg[n] = iD
1

LD

(2π)D

VD2nin
2Dtr[WQX1PX2Q · · ·PXDQ−WPX1QX2P · · ·QXDP ] =

1

LD
tr[Ĉ] (10)

for the even D case.

ℜ.2 Explicit form for different symmetry classes in three dimension∮
.1 3D-AIII

for 3D AIII class, the Dirac metrics is 2n = 2
D+1

2 = 4 dimension, then the five Dirac metrics are given
by [5]

γ1 =

(
0 σ1

σ1 0

)
γ2 =

(
0 σ2

σ2 0

)
γ3 =

(
0 σ3

σ3 0

)

γ4 =

(
1 0

0 −1

)
γ5 =

(
0 −i
i 0

)
the chiral operator is chosen as S = γ4, thus the hamiltonian is given by

H(k) = Akxγ1 +Akyγ2 +Akzγ3 + (M +B
3∑

l=1

k2l )γ5

The spinor of 3D class AIII contains only annihilation operators, which we name generically as Ψ =

(ck,1, ck,2, ck,3, ck,4)
T . in order to translate it to the lattice tight binding model, we have to make the

replacement kl = sin(kl), k2l = 2(1−cos(kl)), thus the hamiltonian can be written as( in the lattice model)

H(k) = Akxγ1 +Akyγ2 +Akzγ3 + (M +B
3∑

l=1

k2l )γ5
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= A sin kxγ1 +A sin kyγ2 +A sin kzγ3 + (M +B
3∑

l=1

2(1− cos kl))γ5

= A sin kxγ1 +A sin kyγ2 +A sin kzγ3 + (M + 6B)γ5 − 2B
3∑

l=1

cos klγ5

in order to translate this momentum hamiltonian to the real space lattice hamiltonian, we have to do
Fourier transform

ck,I =
1√
N

∑
i

e−iri·kci,I ci,I =
1√
N

∑
k
eiri·kck,I

so we have ∑
i

c†i+s,Ici,J =
1

N

∑
i,k,k′

e−iri+s·keiri·k
′
c†k,Ick′,J

=
1

N

∑
k,k′

e−irs·k
∑
i

e−iri···(k−k′)c†k,Ick′,J

=
1

N

∑
k,k′

e−irs·kNδk,k′c†k,Ick′,J

=
∑

k
e−irs·kc†k,Ick′,J

using the above formula, we find∑
k

sin klc†k,Ick,J =
i

2

∑
i

(c†i+Xl,I
ci,J − c†i−Xl,I

ci,J) =
i

2

∑
i

(c†i+Xl,I
ci,J − c†i,Ici+Xl,J)

∑
k

cos klc†k,Ick,J =
1

2

∑
i

(c†i+Xl,I
ci,J + c†i−Xl,I

ci,J) =
1

2

∑
i

(c†i+Xl,I
ci,J + c†i,Ici+Xl,J)

so we have

A sin kxγ1
= A sin kx(c†k,1ck,4 + c†k,2ck,3 + c†k,3ck,2 + c†k,4ck,1)

= A
i

2

∑
i

∑
(I,J)=(1,4),(2,3),(3,2),(4,1)

(c†i+x,Ici,J − c†i,Ici+x,J)

= A
i

2

∑
i

{(c†i+x,1ci,4 − c†i,1ci+x,4) + (c†i+x,2ci,3 − c†i,2ci+x,3) + (c†i+x,3ci,2 − c†i,3ci+x,2) + (c†i+x,4ci,1 − c†i,4ci+x,1)}

A sin kyγ2
= A sin ky(−ic†k,1ck,4 + ic†k,2ck,3 − ic†k,3ck,2 + ic†k,4ck,1)

= A
i

2

∑
i

{−i(c†i+y,1ci,4 − c†i,1ci+y,4) + i(c†i+y,2ci,3 − c†i,2ci+y,3)− i(c†i+y,3ci,2 − c†i,3ci+y,2) + i(c†i+y,4ci,1 − c†i,4ci+y,1)}

A sin kzγ3
= A sin kz(c†k,1ck,3 − c†k,2ck,4 + c†k,3ck,1 − c†k,4ck,2)

= A
i

2

∑
i

{(c†i+z,1ci,3 − c†i,1ci+z,3)− (c†i+z,2ci,4 − c†i,2ci+z,4) + (c†i+z,3ci,1 − c†i,3ci+z,1)− (c†i+z,4ci,2 − c†i,4ci+z,2)}
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(M + 6B)γ5

= (M + 6B)(−ic†k,1ck,3 − ic†k,2ck,4 + ic†k,3ck,1 + ic†k,4ck,2)

= −i(M + 6B)
∑
i

{c†i,1ci,3 + c†i,2ci,4 − c†i,3ci,1 − c†i,4ci,2}

− 2B
∑
l

cos klγ5

= −2B
∑
l

cos kl(−ic†k,1ck,3 − ic†k,2ck,4 + ic†k,3ck,1 + ic†k,4ck,2)

= i2B
∑
l

1

2
{(c†i+Xl,1

ci,3 + c†i,1ci+Xl,3) + (c†i+Xl,2
ci,4 + c†i,2ci+Xl,4)− (c†i+Xl,3

ci,1 + c†i,3ci+Xl,1)

− (c†i+Xl,4
ci,2 + c†i,4ci+Xl,2)}

collecting all the terms, we can write down the real space lattice hamiltonian as

i
A

2

∑
i

{c†i+x,1ci,4 − c†i,1ci+x,4 + c†i+x,2ci,3 − c†i,2ci+x,3}

+i
A

2

∑
i

{−i(c†i+y,1ci,4 − c†i,1ci+y,4) + i(c†i+y,2ci,3 − c†i,2ci+y,3)}

+i
A

2

∑
i

{(c†i+z,1ci,3 − c†i,1ci+z,3)− (c†i+z,2ci,4 − c†i,2ci+z,4)}

−i(M + 6B)
∑
i

{c†i,1ci,3 + c†i,2ci,4}

i2B
1

2

∑
i

∑
Xl=x,y,z

{(c†i+Xl,1
ci,3 + c†i,1ci+Xl,3) + (c†i+Xl,2

ci,4 + c†i,2ci+Xl,4)}

+H.c

in this case, we have n=2, W is the chiral operator W = γ4, and we have

2nin → tr[Γ4Γ5Γ1Γ2Γ3] = 22

so the topological operator read as

Ĉ3D−AIII = i
32π

2nin
W (QXPY QZP + PXQY PZQ) = 8πiγ4(QXPY QZP + PXQY PZQ)

∮
.2 3D-DIII-The B phase of superfluid 3He

A concrete example of 3D class DIII is the B phase of superfluid 3He[6][7]. in this case, we use the
representation of Dirac matrices in the Bernevig-Hughes-Zhang (BHZ) model[8][9]

Γ1∼5 = {sx ⊗ σz, sy ⊗ I, sz ⊗ I, sx ⊗ σx, sx ⊗ σy}

where σi acts on the spin space and si acts on the particle-hole space. we can find that there are 3 real
matrices and 2 purely imaginary matrices , which meet the requirement of the well-defined B

B = (sx ⊗ σz)(sz ⊗ I)(sx ⊗ σx) = −isz ⊗ σy

if we choose γ0 = sz ⊗ I, the A = Bγ0 = −I ⊗ iσy which is the time reversal operator of the Dirac
hamiltonian,namely T = −I ⊗ iσyK, and if we choose the chiral operator to be S = sx ⊗ σy,then the
particle-hole operator is

AS = (−I ⊗ iσy)(sx ⊗ σy) = −isx ⊗ I → C = −isx ⊗ IK
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then the Dirac hamiltonian in the momentum space can be written as

H(k) = ∆ sin kxsx ⊗ σz +∆ sin kysy ⊗ I + (−∆ sin kz)sx ⊗ σx

+ {2t(cos kx + cos ky + cos kz)− µ}sz ⊗ I

in order to convert this model to the real space lattice, we need to figure out the basis, which written in
the Nambu spinor as

η†k = (c†k,↑, c−k,↑, c
†
k,↓, c−k,↓)

where c†k,↑ is the electron-like creation operator with momentum k and spin ↑, c−k,↑ is the hole-like creation
operator with momentum −k and spin ↑. if we consider it in the Fourier transform sense, we can find that

ck,↑ =
1√
N

∑
j

e−iRj ·kcj,↑

c†k,↑ =
1√
N

∑
j

eiRj ·kc†j,↑

c†−k,↑ =
1√
N

∑
j

e−iRj ·kc†j,↑

where cj,↑ is the electron-like annihilation operator on lattice site Rj with spin ↑ and c†j,↑ is the hole-like
annihilation operator on lattice site Rj with spin ↑

the two set of basis (ck,↑, c
†
−k,↑, ck,↓, c

†
−k,↓), (cj,↑, c

†
j,↑, cj,↓, c

†
j,↓) are connected by the usual Fourier trans-

form on lattice site Rj with 4-degree of freedom, namely

dof = (e ↑, h ↑, e ↓, h ↓)

in oder to convert the momentum space hamiltonian to the real space lattice one, we need to consider the
following terms ∑

j

c†j,σc
†
j+l,σ′ =

1

N

∑
j

∑
k,k′

e−iRj ·kc†k,σe
−iRj+l·k′

c†k′,σ′

=
1

N

∑
k,k′

e−iRl·k′ ∑
j

e−iRj ·(k+k′)c†k,σc
†
k′,σ′

=
∑
k,k′

e−iRl·k′
δk,−k′c†k,σc

†
k′,σ′

=
∑

k
eiRl·kc†k,σc

†
−k,σ′

∑
j

c†j,σcj+l,σ′ =
1

N

∑
j

∑
k,k′

e−iRj ·kc†k,σe
iRj+l·k′

ck′,σ′

=
1

N

∑
k,k′

eiRl·k′ ∑
j

e−iRj ·(k−k′)c†k,σck′,σ′

=
∑
k,k′

eiRl·k′
δk,k′c†k,σck′,σ′

=
∑

k
eiRl·kc†k,σck,σ′

∑
j

cj,σc
†
j+l,σ′ =

1

N

∑
j

∑
k,k′

eiRj ·kck,σe
−iRj+l·k′

c†k′,σ′
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=
1

N

∑
k,k′

e−iRl·k′ ∑
j

eiRj ·(k−k′)ck,σc
†
k′,σ′

=
∑
k,k′

e−iRl·k′
δk,k′ck,σc

†
k′,σ′

=
∑

k
e−iRl·kck,σc

†
k,σ′

∑
j

cj,σcj+l,σ′ =
1

N

∑
j

∑
k,k′

eiRj ·kck,σe
iRj+l·k′

ck′,σ′

=
1

N

∑
k,k′

eiRl·k′ ∑
j

eiRj ·(k+k′)ck,σck′,σ′

=
∑
k,k′

eiRl·k′
δk,−k′ck,σck′,σ′

=
∑

k
e−iRl·kck,σc−k,σ′

so we have the following∑
k

cos(Rl · k)c†k,σc
†
−k,σ′ =

1

2

∑
j

(c†j,σc
†
j+l,σ′ + c†j,σc

†
j−l,σ′) (11)

∑
k

sin(Rl · k)c†k,σc
†
−k,σ′ = − i

2

∑
j

(c†j,σc
†
j+l,σ′ − c†j,σc

†
j−l,σ′) (12)

∑
k

cos(Rl · k)c†k,σck,σ′ =
1

2

∑
j

(c†j,σcj+l,σ′ + c†j,σcj−l,σ′) (13)

∑
k

sin(Rl · k)c†k,σck,σ′ = − i

2

∑
j

(c†j,σcj+l,σ′ − c†j,σcj−l,σ′) (14)

∑
k

cos(Rl · k)ck,σc
†
k,σ′ =

1

2

∑
j

(cj,σc
†
j+l,σ′ + cj,σc

†
j−l,σ′) (15)

∑
k

sin(Rl · k)ck,σc
†
k,σ′ =

i

2

∑
j

(cj,σc
†
j+l,σ′ − cj,σc

†
j−l,σ′) (16)

∑
k

cos(Rl · k)ck,σc−k,σ′ =
1

2

∑
j

(cj,σcj+l,σ′ + cj,σcj−l,σ′) (17)

∑
k

sin(Rl · k)ck,σc−k,σ′ =
i

2

∑
j

(cj,σcj+l,σ′ − cj,σcj−l,σ′) (18)

using the above formula, we find that

sin kxσz ⊗ sx = sin kx(c†k,↑c
†
−k,↑ + c−k,↑ck,↑ − c†k,↓c

†
−k,↓ − c−k,↓ck,↓)

= − i

2

∑
j

(c†j,↑c
†
j+x,↑ − c†j,↑c

†
j−x,↑)−

i

2

∑
j

(cj,↑cj+x,↑ − cj,↑cj−x,↑)

+
i

2

∑
j

(c†j,↓c
†
j+x,↓ − c†j,↓c

†
j−x,↓) +

i

2

∑
j

(cj,↓cj+x,↓ − cj,↓cj−x,↓)

sin kyI ⊗ sy = sin ky(−ic†k,↑c
†
−k,↑ + ic−k,↑ck,↑ − ic†k,↓c

†
−k,↓ + ic−k,↓ck,↓)
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= − i

2

∑
j

−i(c†j,↑c
†
j+y,↑ − c†j,↑c

†
j−y,↑)−

i

2

∑
j

i(cj,↑cj+y,↑ − cj,↑cj−y,↑)

+
i

2

∑
j

i(c†j,↓c
†
j+y,↓ − c†j,↓c

†
j−y,↓) +

i

2

∑
j

−i(cj,↓cj+y,↓ − cj,↓cj−y,↓)

sin kzσx ⊗ sx = sin kz(c†k,↑c
†
−k,↓ + c−k,↑ck,↓ + c†k,↓c

†
−k,↑ + c−k,↓ck,↑)

= − i

2

∑
j

(c†j,↑c
†
j+z,↓ − c†j,↑c

†
j−z,↓)−

i

2

∑
j

(cj,↑cj+z,↓ − cj,↑cj−z,↓)

+
i

2

∑
j

−(c†j,↓c
†
j+z,↑ − c†j,↓c

†
j−z,↑) +

i

2

∑
j

−(cj,↓cj+z,↑ − cj,↓cj−z,↑)

2(cos kx + cos ky + cos kz)I ⊗ sz = 2
∑
δ

cos kδ(c†k,↑ck,↑ − c−k,↑c
†
−k,↑ + c†k,↓ck,↓ − c−k,↓c

†
−k,↓)

= 2
∑
δ

{1
2

∑
j

(c†j,↑cj+δ,↑ + c†j,↑cj−δ,↑)−
1

2

∑
j

(cj,↑c
†
j+δ,↑ + cj,↑c

†
j−δ,↑)

+
1

2

∑
j

(c†j,↓cj+δ,↓ + c†j,↓cj−δ,↓)−
1

2

∑
j

(cj,↓c
†
j+δ,↓ + cj,↓c

†
j−δ,↓)}

using the commutation relations {cj,σ, cj+δ,σ′} = 0, {c†j,σ, c
†
j+δ,σ′} = 0 etc, we can simplifying the above

real space lattice hamiltonian to

∆ sin kxσz ⊗ sx = ∆
∑
j

(ic†j+x,↑c
†
j,↑ − icj,↑cj+x,↑ − ic†j+x,↓c

†
j,↓ + icj,↓cj+x,↓)

∆ sin kyI ⊗ sy = ∆
∑
j

(c†j+y,↑c
†
j,↑ + cj,↑cj+y,↑ + c†j+y,↓c

†
j,↓ + cj,↓cj+y,↓)

∆ sin kzσx ⊗ sx = ∆
∑
j

(ic†j+z,↓c
†
j,↑ + ic†j+z,↑c

†
j,↓ − icj,↑cj+z,↓ − icj,↓cj+z,↑)

2(cos kx + cos ky + cos kz)I ⊗ sz = 2
∑
δ,j

(c†j+δ,↑cj,↑ + c†j,↑cj+δ,↑ + c†j+δ,↓cj,↓ + c†j,↓cj+δ,↓)

= 2
∑
δ,j,σ

(c†j+δ,σcj,σ + c†j,σcj+δ,σ)

I ⊗ sz =
∑
j

(c†j,↑cj,↑ − cj,↑c
†
j,↑ + c†j,↓cj,↓ − cj,↓c

†
j,↓)

so the real space lattice hamiltonian for this model becomes

H(k) = ∆ sin kxsx ⊗ σz +∆ sin kysy ⊗ I + (−∆ sin kz)sx ⊗ σx

+ {2t(cos kx + cos ky + cos kz)− µ}sz ⊗ I

→H = ∆
∑
j

(ic†j+x,↑c
†
j,↑ − icj,↑cj+x,↑ − ic†j+x,↓c

†
j,↓ + icj,↓cj+x,↓)

+ ∆
∑
j

(c†j+y,↑c
†
j,↑ + cj,↑cj+y,↑ + c†j+y,↓c

†
j,↓ + cj,↓cj+y,↓)
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−∆
∑
j

(ic†j+z,↓c
†
j,↑ + ic†j+z,↑c

†
j,↓ − icj,↑cj+z,↓ − icj,↓cj+z,↑)

+ 2t
∑
δ,j,σ

(c†j+δ,σcj,σ + c†j,σcj+δ,σ)

− µ
∑
j

(c†j,↑cj,↑ − cj,↑c
†
j,↑ + c†j,↓cj,↓ − cj,↓c

†
j,↓)

if we write the lattice tight binding hamiltonian in terms of the coupling vector and matrices in the basis

dof = (e ↑, h ↑, e ↓, h ↓)

then they are

[−1, 0, 0] ↔


0 i∆ 0 0

0 0 0 0

0 0 0 −i∆
0 0 0 0

 [1, 0, 0] ↔


0 0 0 0

−i∆ 0 0 0

0 0 0 0

0 0 i∆ 0



[0,−1, 0] ↔


0 ∆ 0 0

0 0 0 0

0 0 0 ∆

0 0 0 0

 [0, 1, 0] ↔


0 0 0 0

∆ 0 0 0

0 0 0 0

0 0 ∆ 0



[0, 0,−1] ↔


0 0 0 −i∆
0 0 0 0

0 −i∆ 0 0

0 0 0 0

 [0, 0, 1] ↔


0 0 0 0

0 0 i∆ 0

0 0 0 0

i∆ 0 0 0



[0, 0, 0] ↔


−µ 0 0 0

0 µ 0 0

0 0 −µ 0

0 0 0 µ



−δ ↔


t 0 0 0

0 −t 0 0

0 0 t 0

0 0 0 −t

 δ ↔


t 0 0 0

0 −t 0 0

0 0 t 0

0 0 0 −t


where we have written the term parametrized by t in a more symmetric one

2t
∑
δ,j,σ

(c†j+δ,σcj,σ + c†j,σcj+δ,σ) =
∑
δ,j,σ

(tc†j+δ,σcj,σ + tc†j,σcj+δ,σ − tcj,σc
†
j+δ,σ − tcj+δ,σc

†
j,σ)

similarly, in this case, n=2 and W is the chiral operator Γ5 = sx ⊗ σy, and

2nin → tr[Γ5Γ3Γ1Γ2Γ4] = −22

so the topological operator can be written as

Ĉ3D−DIII = i
32π

2nin
W (QXPY QZP + PXQY PZQ) = −8πiΓ5(QXPY QZP + PXQY PZQ)
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∮
.3 3D-AII-prototype Topological Insulators, Bi2Se3 and Bi2Te3 etc.

The 3D class AII is relevant to prototype TIs such as Bi2Se3 and Bi2Te3, the Dirac matrices used in
the low energy effective hamiltonian is given by[10][11]

Γ1∼5 = {σx ⊗ τx, σy ⊗ τx, σz ⊗ τx, I ⊗ τy, I ⊗ τz}

in this case, there is still 3 real matrices and 2 purely imaginary matrices. and the operator B is given by

B = (σx ⊗ τx)(σz ⊗ τx)(I ⊗ τz) = −iσy ⊗ τz

and we choose γ0 = I ⊗ τz and have A = Bγ0 = −iσy ⊗ I which is the time reversal operator squares to
-1. since 3D AII is in the first descendant series, we should omitted some factor di(k) to derive the 3D
AII class Dirac hamiltonian. we choose Γ3 to be omitted, and consider the following Dirac hamiltonian

H(k) = (M +M1k
2
z +M2k

2
x +M2k

2
y)(I ⊗ τz) +B0kzI ⊗ τy +A0kyσx ⊗ τx −A0kxσy ⊗ τx (19)

following the same strategy above, we k → sin k, k2 → 2(1− cos k),this model can be written as

H(k) = (M + 2M1 + 4M2 − 2M1 cos kz − 2M2 cos kx − 2M2 cos ky)(I ⊗ τz)

+B0 sin kzI ⊗ τy +A0 sin kyσx ⊗ τx −A0 sin kxσy ⊗ τx

in order to derive the real space lattice hamiltonian, we can consider the spinor in this case is written as
ψk = (cks,↑, ckp,↑, cks,↓, ckp,↓)

T , where s and p is the orbital degree of freedom which τ acting on. following
the same strategy as that discussed in the 3D class AIII, we can find that

ck,α,σ =
1√
N

∑
j

e−iRj ·kcj,α,σ

cj,α,σ =
1√
N

∑
k
eiRj ·kck,α,σ

∑
j

c†j,α,σcj+l,α′,σ′ =
∑
k

eiRl·kc†k,α,σck,α′,σ′

→
∑
k

cos(Rl · k)c†k,α,σck,α′,σ′ =
1

2
(
∑
j

c†j,α,σcj+l,α′,σ′ +
∑
j

c†j,α,σcj−l,α′,σ′)

→
∑
k

sin(Rl · k)c†k,α,σck,α′,σ′ = − i

2
(
∑
j

c†j,α,σcj+l,α′,σ′ −
∑
j

c†j,α,σcj−l,α′,σ′)

then we have the real space lattice hamiltonian associated with the above Dirac hamiltonian

(M + 2M1 + 4M2)I ⊗ τz = (M + 2M1 + 4M2)(c
†
k,s,↑ck,s,↑ − c†k,p,↑ck,p,↑ + c†k,s,↓ck,s,↓ − c†k,p,↓ck,p,↓

= (M + 2M1 + 4M2)
∑
j

(c†j,s,↑cj,s,↑ − c†j,p,↑cj,p,↑ + c†j,s,↓cj,s,↓ − c†j,p,↓cj,p,↓)

cos kδI ⊗ τz = cos kδ(c†k,s,↑ck,s,↑ − c†k,p,↑ck,p,↑ + c†k,s,↓ck,s,↓ − c†k,p,↓ck,p,↓

=
1

2

∑
j

{(c†j,s,↑cj+δ,s,↑ + c†j,s,↑cj−δ,s,↑)− (c†j,p,↑cj+δ,p,↑ + c†j,p,↑cj−δ,p,↑)
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+ (c†j,s,↓cj+δ,s,↓ + c†j,s,↓cj−δ,s,↓)− (c†j,p,↓cj+δ,p,↓ + c†j,p,↓cj−δ,p,↓)}

sin kzI ⊗ τy = sin kz(−ic†k,s,↑ck,p,↑ + ic†k,p,↑ck,s,↑ − ic†k,s,↓ck,p,↓ + ic†k,p,↓ck,s,↓)

=
1

2

∑
j

{−(c†j,s,↑cj+z,p,↑ − c†j,s,↑cj−z,p,↑) + (c†j,p,↑cj+z,s,↑ − c†j,p,↑cj−z,s,↑)

− (c†j,s,↓cj+z,p,↓ − c†j,s,↓cj−z,p,↓) + (c†j,p,↓cj+z,s,↓ − c†j,p,↓cj−z,s,↓)}

sin kyσx ⊗ τx = sin ky(c†k,s,↑ck,p,↓ + c†k,p,↑ck,s,↓ + c†k,s,↓ck,p,↑ + c†k,p,↓ck,s,↑)

= − i

2

∑
j

{(c†j,s,↑cj+y,p,↓ − c†j,s,↑cj−y,p,↓) + (c†j,p,↑cj+y,s,↓ − c†j,p,↑cj−y,s,↓)

(c†j,s,↓cj+y,p,↑ − c†j,s,↓cj−y,p,↑) + (c†j,p,↓cj+y,s,↑ − c†j,p,↓cj−y,s,↑)}

sin kxσy ⊗ τx = sin kx(−ic†k,s,↑ck,p,↓ − ic†k,p,↑ck,s,↓ + ic†k,s,↓ck,p,↑ + ic†k,p,↓ck,s,↑)

=
1

2

∑
j

{−(c†j,s,↑cj+x,p,↓ − c†j,s,↑cj−x,p,↓)− (c†j,p,↑cj+x,s,↓ − c†j,p,↑cj−x,s,↓)

(c†j,s,↓cj+x,p,↑ − c†j,s,↓cj−x,p,↑) + (c†j,p,↓cj+x,s,↑ − c†j,p,↓cj−x,s,↑)}

considering the extra chemical potential term −µ
∑

j,α,σ c
†
j,α,σcj,α,σ, the real space lattice hamiltonian can

be written as[12]

H = −µ
∑
j,α,σ

c†j,α,σcj,α,σ + (M + 2M1 + 4M2)
∑
j

(c†j,s,↑cj,s,↑ − c†j,p,↑cj,p,↑ + c†j,s,↓cj,s,↓ − c†j,p,↓cj,p,↓)

− A0

2

∑
j

{−(c†j,s,↑cj+x,p,↓ − c†j+x,s,↑cj,p,↓)− (c†j,p,↑cj+x,s,↓ − c†j+x,p,↑cj,s,↓)}+H.c

− i
A0

2

∑
j

{(c†j,s,↑cj+y,p,↓ − c†j+y,s,↑cj,p,↓) + (c†j,p,↑cj+y,s,↓ − c†j+y,p,↑cj,s,↓)}+H.c

+
B0

2

∑
j

{−(c†j,s,↑cj+z,p,↑ − c†j+z,s,↑cj,p,↑)− (c†j,s,↓cj+z,p,↓ − c†j+z,s,↓cj,p,↓)}+H.c

−M1

∑
j,δ=z

{c†j,s,↑cj+δ,s,↑ − c†j,p,↑cj+δ,p,↑ + c†j,s,↓cj+δ,s,↓ − c†j,p,↓cj+δ,p,↓}+H.c

−M2

∑
j,δ=x,y

{c†j,s,↑cj+δ,s,↑ − c†j,p,↑cj+δ,p,↑ + c†j,s,↓cj+δ,s,↓ − c†j,p,↓cj+δ,p,↓}+H.c

in this class, n is also equal to 2 and W is equal to W = Γ3 = σz ⊗ τx, and

2nin → tr[Γ3Γ5Γ2Γ1Γ4] = −22

so the topological operator is

Ĉ3D−AII = i
32π

2nin
W (QXPY QZP + PXQY PZQ) = −8πiΓ3(QXPY QZP + PXQY PZQ)

∮
.4 3D-CII

as for the 3D CII, since it’s in the second descendant series, we should construct the Dirac matrices
for the the primary series with the same symmetry, which is the 5D symmetry class CII, the Clifford
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algebra is Cl7, the Dirac metrics is at least 23 = 8 dimensional. we can construct it by induction from the
Clifford algebra Cl5 used in the previous discussion in 3D class AIII. that is

γ1 = τx ⊗ σx ⊗ ηx

γ2 = τx ⊗ σy ⊗ ηx

γ3 = τx ⊗ σz ⊗ ηx

γ4 = τz ⊗ I ⊗ ηx

γ5 = τy ⊗ I ⊗ ηx

γ6 = I ⊗ I ⊗ ηy

γ7 = I ⊗ I ⊗ ηz

where the previous five matrices form the Clifford algebra Cl5 which has been used in 3D class AIII. in
order to make it as to that used in literature[13],[5], we can re-ordering these matrices, that is:

Γ1 = γ1 = τx ⊗ σx ⊗ ηx

Γ2 = γ2 = τx ⊗ σy ⊗ ηx

Γ3 = γ3 = τx ⊗ σz ⊗ ηx

Γ4 = γ4 = τz ⊗ I ⊗ ηx

−Γ7 = γ5 = τy ⊗ I ⊗ ηx

Γ5 = γ6 = I ⊗ I ⊗ ηy

Γ6 = γ7 = I ⊗ I ⊗ ηz

the product of all the real matrices is
B = −τz ⊗ σy ⊗ ηy

the chiral operator is chosen as S = Γ6 = I ⊗ I ⊗ ηz, and the matrix Γ1 is chosen to be the role of ΓD+1,
thus, we can find that

A = BΓD+1 = iτy ⊗ σz ⊗ ηz

which serve as the particle hole operator which squares to -1 for the Dirac hamiltonian

H(k) =
∑

i=1,2,3,4,5,7

diΓi

and AS = iτy ⊗ σz ⊗ I serve as the time reversal operator which squares to -1.
the real space lattice hamiltonian are less considering in the literature for this type of Dirac hamilto-

nian, so we ignore the real space lattice version of this one at present.
since CII is in the second descendant, we should set two di(k) to be zero so as to use the dimensional

reduction, we choose d5 = d7 = 0, thus the omitted matrices are Γ5,Γ6,Γ7 and we have n = [D+2+1
2

] = 3

and W = Γ5,Γ6,Γ7, so the topological operator is

Ĉ3D−CII =
32π

2nin
W (QXPY QZP + PXQY PZQ) = −4πiΓ5Γ6Γ7(QXPY QZP + PXQY PZQ)

∮
.5 3D-CI

since in 3D, symmetry class CI lies in the even series, we should consider the Clifford algebra Cl2n+1 =

Cl7 with n = D+3
2

= 3, which is the same as that discussed in the class CII, we can pick up a Γi as the
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chiral operator, namely S = Γ6 = I ⊗ I ⊗ ηz. in this case, we can choose Γ0 = −iΓ7 and construct the
Dirac hamiltonian as[13]

H(k) =
∑

i=0,1,2,3

diΓi

similarly, in this case the product of all the real matrices is

B = −τz ⊗ σy ⊗ ηy

serve as the time reversal operator which squares to +1 and

BS = −τz ⊗ σy ⊗ iηx = −τz ⊗ iσy ⊗ ηx

serve as the particle-hole operator which squares to -1.
since the real space lattice model of this type hamiltonian has been less discussed in the literature

due to the complexity of the 8 dimensional Dirac matrices, we ignore the real space lattice model for this
case at present.

since we only use Γ1,Γ2,Γ3,Γ7, so W = Γ4Γ5,Γ6, similarly, in this case n = [D+3
2

] = 3, so, we have
the topological operator can be written as

Ĉ3D−CI =
32π

2nin
W (QXPY QZP + PXQY PZQ) = −4πiΓ4Γ5Γ6(QXPY QZP + PXQY PZQ)

ℜ.3 Explicit form for different symmetry classes in two dimension∮
.1 2D-A-The Integer quantum hall effect

in the 2D, typical symmetry class A system is the well know quantum hall effect system, the Clifford
algebra for this case is spanned by the three Pauli matrices, and the Dirac hamiltonian can be written
as[12](at present we follow the convention used by the author of the article[2])

H(k) = A sin kxσx +A sin kyσy + (M + 4B − 2B cos kx − 2B cos ky)σz

and the spinor can be written as ψk = (ck,s, ck,p)
T , where s and p donate the two degree of freedom in the

unite cell.using the sam strategy discussed in the 3D AIII class, we have:

∑
k

sin klc†k,Ick,J =
i

2

∑
i

(c†i+Xl,I
ci,J − c†i−Xl,I

ci,J) =
i

2

∑
i

(c†i+Xl,I
ci,J − c†i,Ici+Xl,J)

∑
k

cos klc†k,Ick,J =
1

2

∑
i

(c†i+Xl,I
ci,J + c†i−Xl,I

ci,J) =
1

2

∑
i

(c†i+Xl,I
ci,J + c†i,Ici+Xl,J)

we have the real space lattice version of these terms

sin kxσx = sin kx(c†k,sck,p + c†k,pck,s)

=
i

2

∑
j

{(c†j+x,scj,p − c†j,scj+x,p) + (c†j+x,pcj,s − c†j,pcj+x,s)}

sin kyσy = sin ky(−ic†k,sck,p + ic†k,pck,s)

=
i

2

∑
j

{−i(c†j+y,scj,p − c†j,scj+y,p) + i(c†j+y,pcj,s − c†j,pcj+y,s)}
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σz = (c†k,sck,s − c†k,pck,p)

=
∑
j

(c†j,scj,s − c†j,pcj,p)

cos kxσz = cos kx(c†k,sck,s − c†k,pck,p)

=
1

2

∑
j

{(c†j+x,scj,s + c†j,scj+x,s)− (c†j+x,pcj,p + c†j,pcj+x,p)}

cos kyσz = cos ky(c†k,sck,s − c†k,pck,p)

=
1

2

∑
j

{(c†j+y,scj,s + c†j,scj+y,s)− (c†j+y,pcj,p + c†j,pcj+y,p)}

finally, the real space lattice hamiltonian can be written as:[14][12]

H = (M + 4B)
∑
j

(c†j,scj,s − c†j,pcj,p)− µ
∑
j

(c†j,scj,s + c†j,pcj,p)

+A
i

2

∑
j

(c†j+x,scj,p − c†j,scj+x,p) +H.c

+A
1

2

∑
j

(c†j+y,scj,p − c†j,scj+y,p) +H.c

− 2B
1

2

∑
j

(c†j+x,scj,s − c†j+x,pcj,p) +H.c

− 2B
1

2

∑
j

(c†j+y,scj,s − c†j+y,pcj,p) +H.c

where we have added the chemical potential term parameterized by µ.
in this case, we have n = [D+1

2
] = 1, and W=I since all the Pauli matrices are used and we have

2nin → tr[σzσxσy] = 2i

so the topological operator is

Ĉ2D−A =
4π

2nin
W (QXPY Q− PXQY P ) = −2πi(QXPY Q− PXQY P )

∮
.2 2D-D-Spin-less chiral p-wave topological SCs

A concrete system that realizes the 2D class D is the spin-less chiral p-wave SC[13]. in this case, the
Clifford algebra is also spanned by the Dirac matrices, and the spinor is spanned by the Nambu spinor
without spin, namely ψk = (ck, c

†
−k)

T , where the ck represent creation of electron-like quasi-particle with
momentum k and c†−k represent the creation of hole-like quasi-particle with momentum −k. the real space
lattice hamiltonian for this system is described by

H =
∑
j,δ

t(c†jcj+δ + c†j+δcj)− µ
∑
j

c†jcj

+
∑
j

∆(−i(cjcj+x − cjcj−x) + i(c†j+xc
†
j − c†j−xc

†
j) + (cjcj+y − cjcj+y) + (c†j+ycj − c†j−ycj))
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using the Fourier Transform

ck =
1√
N

∑
j

e−iRj ·kcj

c†k =
1√
N

∑
j

eiRj ·kc†j

cj =
1√
N

∑
k
eiRj ·kck

c†j =
1√
N

∑
k
e−iRj ·kc†k

we can derive the Dirac model for this real space hamiltonian∑
j,δ

t(c†jcj+δ + c†j+δcj) =
∑
j,δ

∑
k,k′

1

N
t(e−iRj ·kc†ke

iRj+δ·k′
ck′ + e−iRj+δ·kc†ke

iRj ·k′
ck′)

=
∑
k,δ

2t cos(k · Rδ)c
†
kck =

∑
k,δ

t cos(k · Rδ)c
†
kck +

∑
k,δ

t cos(−k · Rδ)c
†
−kc−k

µ
∑
j

c†jcj = µ
∑

k
c†kck =

µ

2

∑
k
c†kck +

µ

2

∑
k
c†−kc−k

∑
j

cjcj+δ =
1

N

∑
j

∑
k,k′

eiRj ·kcke
iRj+δ·k′

ck′

=
∑

k
e−iRδ·kckc−k

=
∑

k
−i sin(Rδ · k)ckc−k

since ckc−k is odd in k, the non-vanishing term must be also odd one in e−iRδ·k in the total hamiltonian,
but as for the specific block label by k, the elements is still e−iRδ·k, so we need to add the term −

∑
j cjcj+δ

to derive the odd coefficient, namely 2 sin kδ(notice the Nambu spinor we have chosen)∑
j

c†j+δc
†
j =

1

N

∑
j

∑
k,k′

e−iRj ·ke−iRj+δ·k′
c†k′c

†
k

=
∑

k
eiRδ·kc†−kc

†
k

=
∑

k
i sin(Rδ · k)c†−kc

†
k

so the momentums pace Dirac hamiltonian can be written as( in the Nambu spinor ψk = (ck, c
†
−k)

T )

H(k) = (t cos kx + t cos ky +
µ

2
)σz + 2∆ sin kxσx + 2∆ sin kyσy

in this case, the product of the real Dirac matrices is B = σxσz = −iσy,and we choose γ0 = σz, thus
A = Bγ0 = σx which serve as the particle hole symmetry which squares to +1. we can verify this explicitly:

σxH(−k)Tσx = −H(k)

similarly, in this case, we have n=1 and W=I and

2nin → tr[σzσxσy] = 2i
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so the topological operator is

Ĉ2D−D =
4π

2nin
W (QXPY Q− PXQY P ) = −2πi(QXPY Q− PXQY P )

∮
.3 2D-DIII-Spin-less helical p-wave SC

similarly, as for the symmetry class DIII in 2 dimension, since it belongs to the first descendant series,
we can consider it as the reduction from the same class in 3D dimension, which is

H(k) = ∆ sin kxsx ⊗ σz +∆ sin kysy ⊗ I + (−∆ sin kz)sx ⊗ σx

+ {2t(cos kx + cos ky + cos kz)− µ}sz ⊗ I

and the real space lattice hamiltonian

H(k) = ∆ sin kxsx ⊗ σz +∆ sin kysy ⊗ I + (−∆ sin kz)sx ⊗ σx

+ {2t(cos kx + cos ky + cos kz)− µ}sz ⊗ I

→H = ∆
∑
j

(ic†j+x,↑c
†
j,↑ − icj,↑cj+x,↑ − ic†j+x,↓c

†
j,↓ + icj,↓cj+x,↓)

+ ∆
∑
j

(c†j+y,↑c
†
j,↑ + cj,↑cj+y,↑ + c†j+y,↓c

†
j,↓ + cj,↓cj+y,↓)

−∆
∑
j

(ic†j+z,↓c
†
j,↑ + ic†j+z,↑c

†
j,↓ − icj,↑cj+z,↓ − icj,↓cj+z,↑)

+ 2t
∑
δ,j,σ

(c†j+δ,σcj,σ + c†j,σcj+δ,σ)

− µ
∑
j

(c†j,↑cj,↑ − cj,↑c
†
j,↑ + c†j,↓cj,↓ − cj,↓c

†
j,↓)

by setting the coefficients d4(k) = −∆ sin kz = 0, or setting the term containing kz to be zero.
that is turning off(ignoring) all the the term related to the z spatial dimension, namely, cos kz, sin kz, cj+z

etc. in this case n = [D+1+1
2

] = 2 and the the omitted Dirac matrices are Γ4,Γ5,thus W = Γ4Γ5 =

(sx ⊗ σx)(sx ⊗ σy) = iI ⊗ σz and

2nin → tr[Γ4Γ5Γ3Γ1Γ2] = −22

so the topological operator is

Ĉ2D−DIII =
4π

2nin
W (QXPY Q− PXQY P ) = −πW (QXPY Q− PXQY P )

∮
.4 2D-AII

as for the symmetry class AII in 2 dimension, we follow the general strategy discussed above. since
it belongs to the second descendant. we can consider it as the reduction from the symmetry class AII in
3 dimension, where we have discussed before.

H(k) = (M + 2M1 + 4M2 − 2M1 cos kz − 2M2 cos kx − 2M2 cos ky)(I ⊗ τz)

+B0 sin kzI ⊗ τy +A0 sin kyσx ⊗ τx −A0 sin kxσy ⊗ τx

and the real space lattice version one

H = −µ
∑
j,α,σ

c†j,α,σcj,α,σ + (M + 2M1 + 4M2)
∑
j

(c†j,s,↑cj,s,↑ − c†j,p,↑cj,p,↑ + c†j,s,↓cj,s,↓ − c†j,p,↓cj,p,↓)
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− A0

2

∑
j

{−(c†j,s,↑cj+x,p,↓ − c†j+x,s,↑cj,p,↓)− (c†j,p,↑cj+x,s,↓ − c†j+x,p,↑cj,s,↓)}+H.c

− i
A0

2

∑
j

{(c†j,s,↑cj+y,p,↓ − c†j+y,s,↑cj,p,↓) + (c†j,p,↑cj+y,s,↓ − c†j+y,p,↑cj,s,↓)}+H.c

+
B0

2

∑
j

{−(c†j,s,↑cj+z,p,↑ − c†j+z,s,↑cj,p,↑)− (c†j,s,↓cj+z,p,↓ − c†j+z,s,↓cj,p,↓)}+H.c

−M1

∑
j,δ=z

{c†j,s,↑cj+δ,s,↑ − c†j,p,↑cj+δ,p,↑ + c†j,s,↓cj+δ,s,↓ − c†j,p,↓cj+δ,p,↓}+H.c

−M2

∑
j,δ=x,y

{c†j,s,↑cj+δ,s,↑ − c†j,p,↑cj+δ,p,↑ + c†j,s,↓cj+δ,s,↓ − c†j,p,↓cj+δ,p,↓}+H.c

by setting the d4(k) = B0 sin kz = 0, namely by choosing B0 = 0.
in this case n=2 and W = Γ3Γ4 = iσz ⊗ τz and

2nin → tr[Γ3Γ4Γ5Γ2Γ1] = 22

so the topological operator is

Ĉ2D−AII =
4π

2nin
W (QXPY Q− PXQY P ) = πσz ⊗ τz(QXPY Q− PXQY P )

∮
.5 2D-C

as for symmetry class C in 2D, since it belongs to the even series, we should consider the Clifford
algebra Cl5. and pick up 3 out of five to serve as the basis for the Dirac hamiltonian. since only three are
need and we know the particle-hole operator behaves like iσyK(in algebra Cl5, the product of all the real
matrices is −iσy ⊗ τz). thus we can regrard σx, σy, σz as the chosen three and consider the particle-hole
operator as iσyK and thus then try to construct the Dirac hamiltonian.

H(k) = d1σx + d2σy + d3σz

in this case, we don not following the strategy used in the general discussion, so the constrain in the
coefficient di(k) is not the same as before(where we use Cl5 to describe the even series).

in the following, we try to consider the constrain that with these coefficients, at first

σyK(H(−k))σyK = σyH(−k)∗σy = σyH(−k)Tσy
= σy(d1(−k)σx − d2(−k)σy + d3(−k)σz)σy
= −(d1(−k)σx + d2(−k)σy + d3(−k)σz)

= −H(k)

so the particle-hole symmetry constrain would require that all the coefficients di(k) should be even on k.
so we can write down the hamiltonian in the momentum space as[15]

H(k) = (
µ

2
+ 2t cos kx + 2t cos ky)σz +∆(2 cos kx − cos ky)σx + 2∆ sin kx sin kyσy

where we have also used the Nambu spinor ψk = (ck, c
†
−k)

T , in order to convert it to the real space lattice
hamiltonian, we have

(
µ

2
+ 2t cos kx + 2t cos ky)σz =

∑
j,δ

t(c†jcj+δ + c†j+δcj)− µ
∑
j

c†jcj
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where we have already done for the class D in 2D.
using the fact that has been derived before∑

j

cjcj+δ =
1

N

∑
j

∑
k,k′

eiRj ·kcke
iRj+δ·k′

ck′

=
∑

k
e−iRδ·kckc−k

=
∑

k
−i sin(Rδ · k)ckc−k

∑
j

c†j+δc
†
j =

1

N

∑
j

∑
k,k′

e−iRj ·ke−iRj+δ·k′
c†k′c

†
k

=
∑

k
eiRδ·kc†−kc

†
k

=
∑

k
i sin(Rδ · k)c†−kc

†
k

we can find that

(2 cos kx − cos ky)σx =
∑
j

(cjcj+x + cjcj−x + c†j+xc
†
j + c†j−xc

†
j)

+
∑
j

(−cjcj+x − cjcj−x − c†j+xc
†
j − c†j−xc

†
j)

as for the term sin kx sin ky, we should notice that sin kx sin ky = 1
2i
(eikx − e−ikx) 1

2i
(eiky − e−iky) =

− 1
4
(ei(kx+ky) − ei(kx−ky) − ei(−kx+ky) + ei(−kx−ky)) thus we have(using the fact

∑
j c

†
jc

†
j+δ =

∑
k e

iRδ·kc†kc
†
−k)

2 sin kx sin kyσy = −2i sin kx sin kyc†kc
†
−k +H.c

=
i

2
(ei(kx+ky) − ei(kx−ky) − ei(−kx+ky) + ei(−kx−ky))c†kc

†
−k +H.c

=
i

2
(c†jc

†
j+x+y + c†jc

†
j+x−y − c†jc

†
j−x+y + c†jc

†
j−x−y) +H.c

collecting all the term, the real space lattice hamiltonian can be written as [15]

H =
∑
j,δ

t(c†jcj+δ + c†j+δcj)− µ
∑
j

c†jcj

+∆
∑
j

(cjcj+x + cjcj−x + c†j+xc
†
j + c†j−xc

†
j)

+ ∆
∑
j

(−cjcj+x − cjcj−x − c†j+xc
†
j − c†j−xc

†
j)

+ { i
2
∆(c†jc

†
j+x+y + c†jc

†
j+x−y − c†jc

†
j−x+y + c†jc

†
j−x−y) +H.c}

in this case, we have n=1 and W=I, so the topological operator is

Ĉ2D−C =
4π

2nin
W (QXPY Q− PXQY P ) = −2πi(QXPY Q− PXQY P )

ℜ.4 Explicit form for different symmetry classes in one dimension∮
.1 1D-AIII

as for the 1D AIII class, the Clifford algebra is Cl3, the Dirac matrices are just the three Pauli
matrices, and the Dirac hamiltonian in momentum space can be written as

H(k) = Akxσx + (M +Bk2x)σz = A sin kxσx + (M + 2B − 2B cos kx)σz
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the chiral operator is chosen to be the S = σy.and we can convert the above one to the real space lattice
hamiltonian

H =
∑
j

(M + 2B)(c†j,1cj,1 − c†j,2cj,2)∑
j

−B(c†j,1cj+x,1 + c†j,1cj−x,1 − c†j,2cj+x,2 − c†j,2cj−x,2)

+
A

2

∑
j

−i(c†j,1cj+x,2 − c†j,1cj−x,2)− i(c†j,2cj+x,1 − cj,2)
†cj−x,1

in this class,W = S = σy and n=1 and

2nin → tr[σyσzσx] = 2i

so the topological operator is

Ĉ1D−AIII = i
2

2nin
W (QXP + PXQ) = +1σy(QXP + PXQ)

∮
.2 1D-BDI-spinless SuSchrieffer-Heeger model

the example of symmetry class BDI in 1D is the spin-less SSH model, with 2 lattice site A and B in
each unite cell, A is the label for the creation of electron-like quasi-particle, B is the label for the creation
of hole-like quasi-particle, and the lattice hamiltonian can be written as[16]

H =
∑
j

(t+ δt)c†j,Acj,B + (t− δt)c†j+x,Acj,B +H.c

in the spinor ψk = (ck,A, ck, B), the momentum space hamiltonian can be written as

H(k) = (t+ δt)σx + (t− δt) cos kxσx + (t− δt) sin kxσy
= (t+ δt+ (t− δt) cos kx)σx + (t− δt) sin kxσy

in this case, the product of all the real matrices is B = σzσx = iσy and the chiral operator is chosen to be
S = σz, γ0 = σx, thus A = Bγ0 = σz, so the the particle-hole operator is P = σzK, and the time reversal
operator is T = IK, which both square to +1.

in this class n=1 and W = σz and

2nin → tr[σzσxσy] = 2i

so the topological operator is

Ĉ1D−BDI = i
2

2nin
W (QXP + PXQ) = +1σz(QXP + PXQ)

∮
.3 1D-D-spinless Kitaev p-wave SC chain

as for the 1D class D, we can derive it from 2D class D by induction(setting ky = 0), or we can
consider another concrete example, that is the spin-less Kitaev p-wave SC chain described by[17]

H =
∑
j

t(c†jcj+x + c†j+xcj)− µ
∑
j

c†jcj

+
∑
j

∆(cjcj+x + c†j+xc
†
j)
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we can use the Nambu spinor ψj = (cj , c
†
j)

T or ψk = (ck, c
†
−k)

T , then convert this real space lattice
hamiltonian to the momentum space version

H(k) = (t cos k − µ)σz +∆ sin kσy

the particle hole operator is given by P = σxK, we can check that

PH(−k)P = −H(k)

in this case n=1 and W = σx and

2nin → tr[σxσzσy] = −2i

so the topological operator is

Ĉ1D−D = i
2

2nin
W (QXP + PXQ) = −1σx(QXP + PXQ)

∮
.4 1D-DIII

as for the symmetry class DIII in 1D, since it’s in the Second Descendant, it can be viewed as the
reduction from the same class in 2D, that is setting the term involve ky to vanishing in the Dirac model
for 2D DIII(which is also a reduction from the 3D DIII class.)

H(k) = ∆ sin kxsx ⊗ σz +∆ sin kysy ⊗ I + (−∆ sin kz)sx ⊗ σx

+ {2t(cos kx + cos ky + cos kz)− µ}sz ⊗ I

and the real space lattice hamiltonian

H(k) = ∆ sin kxsx ⊗ σz +∆ sin kysy ⊗ I + (−∆ sin kz)sx ⊗ σx

+ {2t(cos kx + cos ky + cos kz)− µ}sz ⊗ I

→H = ∆
∑
j

(ic†j+x,↑c
†
j,↑ − icj,↑cj+x,↑ − ic†j+x,↓c

†
j,↓ + icj,↓cj+x,↓)

+ ∆
∑
j

(c†j+y,↑c
†
j,↑ + cj,↑cj+y,↑ + c†j+y,↓c

†
j,↓ + cj,↓cj+y,↓)

−∆
∑
j

(ic†j+z,↓c
†
j,↑ + ic†j+z,↑c

†
j,↓ − icj,↑cj+z,↓ − icj,↓cj+z,↑)

+ 2t
∑
δ,j,σ

(c†j+δ,σcj,σ + c†j,σcj+δ,σ)

− µ
∑
j

(c†j,↑cj,↑ − cj,↑c
†
j,↑ + c†j,↓cj,↓ − cj,↓c

†
j,↓)

by setting the coefficients involving ky, kz to be zero in the momentum space hamiltonian or any term
involving y and z in the real space lattice hamiltonian.

in this case, we have n=2 and W = (sy ⊗ I)(sx ⊗ σx)(sx ⊗ σy) = isy ⊗ σz and

2nin → tr[Γ2Γ4Γ5Γ3Γ1] = −22

so the topological operator is

Ĉ1D−DIII = i
2

2nin
W (QXP + PXQ) = − i

2
isy ⊗ σz(QXP + PXQ)
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∮
.5 1D-CII

as for the symmetry class CII in 1D, since it belongs to the even series, if we follow the standard
strategy, then we should consider the Clifford algebra Cl5, the Dirac matrices are given by

Γ1∼5 = {σx ⊗ τz, σy ⊗ τz, I ⊗ τx, I ⊗ τy, σz ⊗ τz}

the product of all the real matrices is B = iσy ⊗ τx, if we chose the chiral operator as S = Γ5 = σz ⊗ τz,
then the BS = σx ⊗ τy. so the time reversal operator is T = σx ⊗ τyK and the particle-hole operator is
P = iσy ⊗ τx which both square to -1.

if we choose γ0 = −i(σx ⊗ τz)(I ⊗ τx)(I ⊗ τy) = σx ⊗ I, then the Dirac hamiltonian can be written as

H(k) = d1(k)σy ⊗ τz + d0(k)σx ⊗ I

this is the standard procedure. But we can choose new basis, so that our T = iσyK and P = iτyK, and
then we can find the following form hamiltonian take this two symmetries:

H(k) = d1(k)σy ⊗ τz + d0(k)I ⊗ τx

we can set d1 = A sin k, d2 =M + 2B − 2B cos k(d1 ∼ k, d2 ∼M + k2 in the linear expansion) then using
the spinor ψk = (ck,1, ck,2, ck,3, ck,4)

T , we can convert this momentum space hamiltonian to the real space
one with the same process discussed above

H(k) = A sin k(−ic†k,1ck,3 + ic†k,2ck,4 + ic†k,3ck,1 − ic†k,4ck,2)

+ (M + 2B − 2B cos k)(c†k,1ck,2 + c†k,2ck,1 + c†k,3ck,4 + c†k,4ck,3)

→ A

2

∑
j

{−(c†j,1cj+x,3 − c†j,1cj−x,3) + (c†j,2cj+x,4 − c†j,2cj−x,4) + (c†j,3cj+x,1 − c†j,3cj−x,1)− (c†j,4cj+x,2 − c†j,4cj−x,2)}

(M + 2B)
∑
j

(c†j,1cj,2 + c†j,2cj,1 + c†j,3cj,4 + c†j,4cj,3)

−B
∑
j

{(c†j,1cj+x,2 + c†j,1cj−x,2) + (c†j,2cj+x,1 + c†j,2cj−x,1) + (c†j,3cj+x,4 + c†j,3cj−x,4) + (c†j,4cj+x,3 + c†j,4cj−x,3)}

in this case, n=2, and W = Γ1Γ4Γ5 = iσy ⊗ τy = −iS and

2nin → tr[Γ1Γ4Γ5Γ3Γ2] = 22

so the topological operator is

Ĉ1D−CII = i
2

2nin
W (QXP + PXQ) = i

1

2
W (QXP + PXQ)
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