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§1 THE CLIFFORD ALGEBRA REPRESENTATION OF THE ORTHOGONAL GROUPS

§1 The Clifford Algebra representation of the Orthogonal groups

R.1 Dirac metrics-the basis of the clifford algebra

in order to define the Dirac type hamiltonian, we try to define a Clifford algebra CI™ for the group
SO(n), namely, the bi-vectors in the Clifford algebra CI"™ form the basis of the Lie algebra of the group
SO(n).

since the construction of the Clifford algebra can be very hard for arbitrary dimension, at present we
consider the Clifford algebra C1?"*! for the group SO(2n+1) by consider the construction using conduction,
since we know that the Clifford algebra CI? for SO(3) is spanned by

2%2
Spang{l,0,,0y,0.,0,0,,0,0,,0,40,,0,0,0,} = C

note that even if 0,0, = i0., 0,0, and o0, is linear independent over R.
and then define the Cliford algebra C1?"*! by induction from C[?"~!

Fi<2n = F; & Ox F2n =1 & Oy I‘\211-"-1 =1 & (o3

thus this representation of the Basis of the Clifford algebra C1?"*1 is 2" dimensional metrics by construction
which is also the minimum dimension of metrics representation of the Clifford Algebra C1?"*!. since the

total number of independent metrics with respect to the real R is
2 x 2" x 2" = 22t

which is the same as the real dimension of the Clifford algebra C1?"*! actually this is due to the basic fact
that C1%+! =2 @, R6*16 @ CI' and CI° =2 C?*2, CI° = H**?2 @ H**? and CI” = C®*8, we know that the
behavior of C1?"*1 is similar for even n which is quite different from the odd n.

within the above construction, the pseudo-scalar is just
w=I1Ty T = "
and the metrics I'oxy; is real and I'g is purely imaginary, and we can define product of all the real metrics
B=TTs--Topps = B~ = Bl =Ty 1Tap 1 - ToTy
and we can compute that
Bl B ' =113 Topyiloploniilon g - D3y = (=1)" M9 BB~ = (=1)" "'y, = (=1)"T%,
since we know I'5, = —I'g;, furthermore

Bl B =T1T3- TopyiTapi1Toni1lon 1+ T3y = (—=1)" "1 T3 - Top 1 Doy 1 DorgaTons 1 Tons 1 Don 1 - - - [Ty
= (—1)n_kr1rs coDoppiloppilopyr -+ - I'sl'y = (—1)n_kF1F3 coDopyr - - I'sl'y
)" (=1)*Tgg 1 Tils - Top 1 Topq - Ty = (= 1) *Dgpq TyDg - v oo sy

(-1
(=1)"Top1 = (—1)"T5 44

since I'gxy1 is real metrics, so we can write the above into a compact form as
—1 n*
BI,B~" = (-1)"T";

we need this operator B and the above equation due to the fact that we want to construct anti-linear
symmetry operator time-reversal T and Particle-Hole C from B in the following context in considering the

Dirac model.
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

R.2 The symmetry of the Dirac metrics

there is a degree of freedom of choosing these Dirac metrics, given a basis of Clifford algebra for
SO(2n +1):
F17F23 e 5F2n+1

we can choose an elements of SO(2n+1), namely O and consider the following metrics
{vi =Y 0i,;T;}
J
we can directly calculate that
{Vi:7} = 0540, {1k, T} = 20, 10,0, = 20; 1,0, ) = 20;

which means that this set of metrics can also be used as the basis. so there is SO(2n+1) degree of freedom
of choosing the basis.

besides, we can find that

Y1273 Ven+1
= E 01,i102,i2 s O2n+1,i2n+1ri1 Fi2 T Fi2n+1

11,82, 82041

= Z ((i1, 42, yigng1) = 0(1,2, - ,2n +1))O14, 024, -+ Ozpy1in, o, Liy iy -+ iy,
segntl

= 01,,024, - - O2ni1,igp 11 €ir iy iz L2 Do

= O1,i1 O2,i2 te O2n+1,i2n+1€i17iz,--~ ,izn+1in

— det(0)i"

— /L‘TL

in the above, we have used the fact if any two index iy, 4; is the same, then the sum is zero, for example

if in choosing the term from the second one such that i = i1, then
Z Ol,i1 OQ,ilril Fil'YIS o Yon41l & Z O1,¢1 OZ,il'YS o Yon+1 = 0
’il il
since O is an element of SO(2n+1). so the non-vanishing term after summation must satisfying io # i,

and so on.

§2 The Dirac model for different symmetry class and different spatial dimension

in this section, we try to consider the Dirac type hamiltonian for any symmetry class and any spatial

dimension. which can be written in momentum space as:

D

H(k) = ri(k)T;

=0

and the I'; are the elements of some kind of basis of Clifford algebra.
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

R.1 The hamiltonian constructed for the two complex classes

we start from the two complex class A and AIIl which contain no anti-linear operators.
for any spatial dimension D in these two complex classes, we can choose n = [%}, and consider the
Clifford algebra C7?"+!

if Diseven, D =2m —n=m,2n+1 = 2m + 1 = D + 1, the Clifford algebra is CI?>"*! thus we
choose I'y = I'p;1 = I'a;i1, and there is no extra I' left behind for us to define the Chiral symmetry
operator(which anti-commute with H (k)), since we have constructed the hamiltonian in D dimensional as

H(k) = Zio r;(k)[';,thus this hamiltonian belongs to the symmetry class A.

D
A: D=2m HK) => r(kI; To=Tpg=Tonn CIP"

i=0
if Disodd, D =2m —1 — n =m,2n+ 1 = 2m + 1, the Clifford algebra is C1?*™*! thus we can choose
'y = I'py1 = gy, and there is also a I' left behind which is I'pys = I's,1q, since it anti-commute
with all the I';<p, it can serve as an chiral operator for the hamiltonian H (k) = Zi’;o r;(k)I';, thus this

hamiltonian belongs to the class AIIL.

D
AIIT: D=2m-1 HK) => r(k; To=Tpy =T, =Tsps CP"™
i=0
so we have constructed the required hamiltonian for these two complex symmetry classes which can take
non-trivial topological order.
in the dimension D = 2m — 1, if the system takes no chiral symmetry, then we can add extra term

7p+11l2m+1 to the hamiltonian
D
H(k) = Z (k)L + rpralami
i=0

then the classification of this hamiltonian can be characteried by the homotopy group ma,, 1 (S*™) , which
is trivial, this corresponds to the case that in odd dimension the symmetry class A takes trivial topological

phases.

R.2 the hamiltonian constructed for the eight real classes

in the real class, there is anti-linear operators which make a connection between H (k) and H(—k), so
in this case, we impose extra symmetry on the choosing of the parameters for the Dirac type hamiltonian,

since in the gap closing point, the energy band behaves like k- I_", in the hamiltonian
D
H(k) =Y ri(k)T;
i=0

we impose(which is essentially the case for the linear Dirac Model)
ri(k) = —ri(=k)  ro(k) =ro(-k)

which means that ry behaves as the mass term in the model and r; behaves as the momentum. and we

have
TH&)*T™ = H(~k) = ro(k)TT;T " = ro(—k)To, (k)T T = (k)T
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

which means that
TI‘ST‘1 =Ty Tl“;‘T_1 =TI

since we have imposed the constrain on the parameters

similarly, for the particle-hole symmetry,
CH(k)*Cil = —H(—k) — 7"0(1()0]?;071 = —To(—k)ro, 7",’(1()0]??071 = —rz(—k)Tz

which means that
CryC'=-Iy CT;C'=T,

$.1 The Primary Series

in order to discuss all the real cases, we at first try to consider the diagonal entry of the periodic

table[3] which is called the primary series in literature. for the spatial dimension D, we consider n = [%]

and set I'g = I'py 1 as before.
Even D case: when Diseven, D =2m - n=m,2n+1=2m+1,D+1=2m+ 1,1y =Tps; =
[yi1,the Cliffod Algebra is C1?™*1, there is no extra I'; left behind and there is also no chiral symmetry

in this case. what left for us is to find the possible T or C operators. define
A= BTy
we can find that

AT} = B} =13+ Topm 1 Doy Do I = (=1)"Tapa il -+ - Doy 1 Do I = (1) T BT
= (=1)"To(-=1)"T;B = (-1)"™T;,BI'y = (-1)™"'T; A
— ATTA™! = (=)™,

similarly, we have

Alg = Blol'g =Thl3 - Topm1 Doy Domi1 5,00 = (1) LoDl - Doy 1 lopn g = (1) T BIg
= (=1)"To(=1)"T'\B = (=1)™T'\Bl, = (—1)"T, A
— AT3A™ = (—=1)™T

so if m is even, A behaves like Time reversal symmetry and if m is odd, A behaves Particle-Hole symmetry

on the hamiltonian

H(k) =Y ri(k)T;

=0

besides, we have

(m—1)m

AA* = BF()BFO = F1F3 s Fgm_1F2m+1F2m+1T1F3 e F2m—1F2m-‘,-1I‘27rL—|-1 = (_1)
thus we can conclude which symmetry class the hamiltonian belongs to, namely
D=2m=1A=C,CC* = +1,symmetry class D
D=4m=2A=T,TT" = —1,symmetry class AIl

D=6m=3,A=C,CC* = —1,symmetry class C
D=8m=4A=T,TT" = +1,symmetry class Al
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

Odd D case: when Disodd, D =2m—-1—-n=m2n+1=2m+1,D+1=2m, [\ =Tpy =
[y, the Cliffod Algebra is CI1?™ T, there is an extra I's,, ;1 left behind and there is chiral symmetry in
this case, we can define it as S = I'p, o = I's,, 11 since we have omit it in the hamiltonian. what left for

us is to find the possible T and C operators. define
A - BFO
we can find that

A} = BLoI'; =T1Ds -+ Do 1Dopmy1Tomly = (1) ' Do TiTs - - - Doy 1 Dopn Iy = (1) Ty BI;
= (=1)""Do(=1)"T;B = —I'\I;B = (—1)' "™, By = (-1)™ T A
— AT¥A™ = (—1)™*1y

similarly, we have

Al = BTy =T1ls -+ Do 1Domy1Tom D5, = (—1)" ' 1o D15 - - - Topy 1 T T3, = (1) T BTG
= (=1)"MDo(=1)"TyB = —(—1)""'T'\Bly = (—1)"T A
— ATGA™ = (—=1)™T,

so if m is even, A behaves like Time reversal symmetry and if m is odd, A behaves Particle-Hole symmetry

on the hamiltonian, which is the same as the even case,

D

H(k) = ri(kT;

i=0
besides, we have
AA* = BToB(~Tg) = ~I'1Ts - Tom1Tami1DamDiTs -+ Tom 1 Do Doy = (—1)Fm =55 = ()=
which is also the same the the even case, besides, since AS is another anti-linear operator which is a
different type of A and it squares to
(AS)(AS)" = (—1)™ 5 +mHl = ()™

so we can directly derive the symmetry class that the hamiltonian belongs to, namely

D=1m=1,A=C,CC*=+1,AS =T, TT* = +1,symmetry class BDI
D=3m=2A=T,TT" = —1,AS = C,CC* = +1,symmetry class DIII
D=5m=3A=C,CC*"=—-1,AS =T, TT* = —1,symmetry class CI1I
D=7Tm=4,A=T,TT" =+1,AS = C,CC* = —1,symmetry class C1

thus we can find that when D goes from 0 to 7 the Dirac type hamiltonian constructed with the help of

the Clifford algebra CI[75"]
D

H(k) = ri(kT;

=0
goes around the eight symmetry classes, respectively. Thus we have work out all the diagonal symmetry

class in the specific spatial dimension D.
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

$.2 The Even Series

in this part, we construct the Dirac type Hamiltonian for the even series which is labeled by the

topological number 2Z. In this case, for the spatial dimension D, we consider n = [%], which give us

extra two Dirac Gamma Metrics unused in the construction of the hamiltonian and we define

I'o=—il'pt1l'pi2l’pys

Even D case: when Diseven, D =2m - n=m+1,2n+1=2m+3,D+1=2m+ 1,1 =
—il9ms1l2m ol 2m3,the Cliffod Algebra is C1?™*3, there is no extra I'; left behind and there is also no

chiral symmetry in this case. what left for us is to find the possible T or C operators. we can find that

BT} = (-1)"I';B = (-1)"*'I';B
— BB~ = (—-1)"*'T;

similarly, we have

BTG = B(=ilami1lamialamis)” = iBUS, 1050l s00s = i(=1)* " DT 1 Doyl s B
= (=" —ilomy1lomialomisB = (=1)"T'\B
— BIyB™! = (—1)"T,

so if m is even, B act as the Time reversal operator and if m is odd, B act as the Particle hole operator

on the hamiltonian

besides, we have

(m+1) (m+2)
2

BB* =T1l'3 - Topm1lomi1lomyal 1l - Tom1Domga Tomgs = (—1)
thus we can conclude which symmetry class the hamiltonian belongs to, namely

D=2 m=1,B=C,CC"=—1,symmetry class C
D=4m=2B=T,TT" = +1,symmetry class Al
D=6,m=3,B=C,CC"=+1,symmetry class D
D=8m=4,B=T,TT* = —1,symmetry class AIl
Odd D case: when Disodd, D =2m -1 —->n=m+1,2n+1=2m+3,D+1 = 2m,[{ =
—il9mComy1Domy2,the Cliffod Algebra is C12™*3) there is an extra I's,, 13 = I'py4 left behind and there

is also chiral symmetry in this case, so we can define S=I'p 4 = I's,,13. what left for us is to find the

possible T and C operators. we can find that
BT = (-1)"I';B = (-1)"*"'I';B
— BIyB™' = (—1)™*"'T;
similarly, we have

BT = B(—iT9mlami1Domya)* = iBTs, T5 Tanio = i(—1)30" 0Ty, Ty, 1 Doy B
= (_1>m - z']'_‘QTYLFZTn—‘,—lPQmJ,-QB — <—1)mF0_B
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

— BI:B™ ' = (—1)"T,

so if m is even, B act as the Time reversal operator and if m is odd, B act as the Particle hole operator

on the hamiltonian as the even case

D
H(k) =Y ri(k)T;
i=0
besides, we have

(m4+1)(m+2)
2

BB* = F1F3 e FQm_1F2m+1F2m+3F1F3 T I‘l2m—1I‘2m+1F2m—&-3 = (71)

and BS is another type of anti-linear operator which is different from B, and BS satisfying

m414 (nz+1)2(7n+2)

(BS)(BS)" = (=1) =(=1)

m(m+1)
2

thus we can conclude which symmetry class the hamiltonian belongs to, namely
D=1m=1,B=C,CC*=-1,BS=T,TT* = —1,symmetry class CI[
D=3m=2,B=T,TT"=+1,BS =C,CC* = —1,symmetry class CI
D=5m=3,B=C,CC*"=+1,BS =T,TT" = +1,symmetry class BDI
D=7Tm=4,B=T,TT"=—-1,BS = C,CC* = +1,symmetry class DIII

thus we can find that when D goes from 0 to 7 the Dirac type hamiltonian constructed with the help of
the Clifford algebra CI[7z"]

D
H(k) = ri(kT;
i=0
goes around the eight symmetry classes, respectively. Thus we have work out all the even series in the
specific spatial dimension D.
$.3 The first and second descendants

these two cases are simply obtained from the primary series with the same symmetry class by going
one or two dimensional lower by setting rp = 0(rp = 0,rp_; = 0), respectively.

in the primary series, we find that for odd D

Toly - TpS = (=1)PTy - Tplpplpys = (—1)Pil7 ] = —i 7
in the even series, we find that for odd D
Toly - TpS = —iTpilprolpssls - Tplpa = —i(—1)PTy -TplpsiTppalpialpa = i-i 2 = —i %
in both case, for odd D, we have
Tl -TpS =—i 7
similarly, in the primary series, for the even D, we have
Loy -Tp = (—1)°Ty -Tplpyy =i?
in the even series, for the even D, we have
Lol - Tp = =il pilpyolpsly - Tp = —i(=1)PTy - Tplpilpialpys = —iir =%

so, in both case, for even D, we have
.D

FUF1°FD:’L2

all the above discussion are summarized in the Figure(1)
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

TABLE II. Pairs (7, C), for the primary series (diagonal) and the even series (remaining entries). The subindex n indicates the size of
the Dirac matrices which are 2" dimensional. Blue entries satisfy XX* = 41 and red entries satisfy XX* = —1, where X =T, C. Here, B
is the product of all real I';, A = BT"y (where I'y is the I'; that plays the role of the “mass term” in the Dirac Lagrangian), and S is the I';
that implements the chiral symmetry. The arrows indicate the descendants that simply inherit the choices from the primary series. The table
continues periodically for D > 7, with the index n increasing by 4 with each period.

D=0 D=1 D=2 D=3 D=4 D=5 D=6 D=7
Al A, =)o (B, -)s - -
BDI <« (AS, A), (BS,B), <«
D <« <« (= A (=B
DII <« <« (A, AS), (B, BS)s
All B, —)h <« “« A, =)
ca (BS, B), <« <« (AS,A);
C (=, B)2 “« <« (= A)
CI (B, BS)3 « «— (A, AS),

Figure 1: the operators in different symmetry class and spatial dimensions

k.3 Some comments on the above construction

in the following context, we refer to the specific choice of Dirac Metrics I'; to be the one constructed
in section (1).

in the above proof, it greatly relies on the specific construction of the Dirac metrics and the order
of these metrics. since there is SO(2n+1) degree of choosing the Dirac metrics ( the basis) and S2"*+1

symmetry( the order of these metrics ), in this section, let us make some comments on the above strategy.

o there is O(n + 1) x O(n) C O(2n + 1) degree of freedom of choosing these basis so as the above
strategy still works.

the metrics B defined above is B = I'1I'3'5 - - - I'a,,11, which can be extended to the product of all

the real metrics but there is a restriction to the basis choice that it is either real or purely imaginary.

consider a basis transformation ~; = O, ;I'; , then v/ = OMF’;, since I';,, .1 = [y and I'5,, =
—I'9y,, so if «y; is real, it requires that O; o, = 0, if 7; is purely imaginary, it requires that O; 2541 = 0,
so in order to derive n+1 real basis and n purely imaginary basis, the choice of O is reduced from
O(2n+1) to O(n+ 1) x O(n), in this sense, B is well defined as the product of all the real metrics
and it satisfying
ByB™ = (=1)"y]

since if «; is real, then it should be exchange n times from the right of B to the left of B which will
give us (—1)"y;BB~! = (—1)"~; due to the construction of B.

if ; is purely imaginary, then it should be exchange n+1 times from the right of B to the left of B
which will give us (—1)""'y;, BB~ = (—=1)" " (—~}) = (—1)";

Obviously, not all the transformation will give us n+1 real basis and n purely imaginary basis, for
example, 71 = 0,72 = —sinfoz+cos oy, v3 = cos oz +sin fo, is also a basis of the Clifford algebra

of CI3, but there is no purely imaginary metrics.

e the ordering of these Dirac metrics has no influence in the above strategy.

this is to say, the choice of 7y can be arbitrary.define A = B~y with arbitrary -y, we can fallow the

above proof with this extended B.
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§2 THE DIRAC MODEL FOR DIFFERENT SYMMETRY CLASS AND DIFFERENT SPATIAL DIMENSION

As for the primary series, in the Even D case, D = 2m — n = m,as for any v; # 7o, we have

A9} = By, = ()" Ba7 = (<1)7(~1) "D gy, 8
= (FD(1) (=) 0B = (~1) (1) (1) (1) 0B = (1)

— Ay AT = (1)

but for vy, we have that

Ang = Byorg = (=1)" M0 By = (=) (=) M50
_ (_l)n( 1)(n+1 'YO'YOB ( )n( 1)(n+1)/n( 1)(n+1 /n’YO’Y B = ( )n’YOA
— Ay AT = (=1)"y

besides, if 7y is chosen to be the purely imaginary:
AA* = ByBrg = ByB(—0) = Byo(—0)(~1)""'B = (-1)"B*
if 7y is chosen to be the real one:
AA* = ByBy; = ByB(v) = Byy(-1)"B = (-1)"B?

in both cases, the result is the same
n(n—1)
2

AA* = (<1)"B? = ()" = (—1)

which is the same as the previous result which we take the specific form of I'; and ordering.

for the Odd D case in the primary series, D = 2m — 1 — n = m, which is the same as the previous

one since the Clifford algebra we considering is the same CI?"*!.

but in this case we can choose another arbitrary one as our chiral operator S # 7o, then we have

n(n—1) n(n+1)
2 2

(AS)(AS)" = ASA*S* = (—~1)" 1 ASSA* = (—1)"*}(~1) = —(-1)

regardless of real or purely imaginary choice of S. which is the same as the above specific choice of

I'; and ordering.

as for the even series, for the even D=2m, n=m+1, and in this case, we can choose arbitrary

Yo = —%7;y;v, and find that

B~

?

— (_1)n’%B — ( )m—H’%B N B’V*B_ ( 1)m+1,yi

as for o, we have

***

By = iBy vy = i(=1)" B = (=1)" "B = (1) B
= By B = (=1)"

besides, we have
n(n+1)
2

BB* = B* = (—1)
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§3 UNIFIED TOPOLOGICAL INVARIANTS: THE WRAPPING NUMBER][? ]

which is the same as the previous result with the specific form of I'; and ordering.

for the odd D=2m-1, n=m+1, in this case, after choosing arbitrary vy = —%7;y;7, we can choose
arbitrary chiral operator S # +; ; x, then we have

n(n+1) n(n—1) m(m+1)
2 2

(BS)(BS)* = BSB*S* = (—1)"BSSB = (—1)"B? = (—1)"(~1) — (—)*FY = (c)

which is also the same as the previous result.

we need to notice that in this case, the choice of 7, can also be extended to vy = —iv; since
By =By} =i(=1)"y;B = (-1)""'9B — By B~ = (=1)" "'y
which means that it can also be used as the mass term generator!

In conclusion, the choice of 79 and S can be arbitrary in this strategy as long as there is always n+1

real basis and n purely imaginary basis. In other words, there is O(n + 1) x O(n) degree of freedom for

choosing the basis, under this constrain, the ordering of these metrics does not affect the whole strategy.
there is also one thing to be clarified, that is we should ordering the other Dirac metrics to meet the

requirement that.

for even D

D
2

T'ol'y ' I'p=1
for odd D

D+1

F0F1 . FDS =—1 2

§3 Unified Topological Invariants: The Wrapping Number[1]

.1 The degree of a map

we can consider two manifolds N and M of the same dimension D, and a map f: N — M, lLet M be

orientable with a volume form w that is nowhere vanishing, and define

VM:/W
M

the integer-valued degree of the map f is defined as

1
de :/ *w
gf v Nf

where f*w is the pullback of the form w by the map f, which is also a D-form on N, and this is equivalent

to the algebraic definition of the degree which read as

degf = Z signJ (k)
ke f—(z0)
where J is the Jacobian of the map f
o
ok
if M is the sphere M = SP, then we have the above formula by considering SP embedding in the

J;(k) = det

RP*+1 and the volume form in SP is induced from the volume form in RP*! which is trivially defined
as wgo+1 = dr® Adr' A--- A drP| since the volume form in the manifold with Riemann measure g(x) is
w = y/detg(z)d"z, and in RP*! the metrics is just g(z) = I,, since it’s Euclidean. since the metric tensor
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in RPlis g = Ziio dx;dz;, so the pullback of this metric tensor to S” by the map h(y)(where y is the

local coordinate in SP) is (z; = hi(y))

D D
only) , Ol o)

=N dhidh, = p o
; i—0 ﬁyj Yj 8y ]Zk ; Ui ) Y;iaYk

which mean that the Riemann metric in SP is

Z 3h (y) 8h(y) ) Oh(y)
pad ayg Yk dy;  Oyk
if we choose the local coordinate in S? as (n',n?, -+, n”) under the map h it maps to (n%,n,---nP), so
we have Ohly)  om® Oh(y) Oh(y) Ond and
Y n Y Y n-on
— (2 0,0,0,---,1,---,0,0) — . g s,
ayj (anjv y Uy Yy P y Yy ) 8y7, ayj ('971’ 877,3 + 5J
on the other hand we have
D ,
on® O\ 1 =222, nh? o
ont on? oo
then we can find that
1 0
det(g*) = det
0 g*
and we can find that
n? nt n? n? n? nt n? nP !
Lo ont 0 0 || 2%= 0 0
(b o)-|B o |5 o o |
g . 0 0
an® an°
D 0 0 1 o 0 0 1
where the first row of N is (n% n!,--- nP) and the (i+1)’s row of N is just 8,:(n° n',--- nP), so the

(i+1,j+1) elements of NN is just dpi(n®,n',--- ,nP) -9, (n°,n',--- ,nP) = g;;, together with the fact

that
0

D on nJ
E n?=1 n"——+n/=-n"—+n'=0
; onJ no

which make sure the fist row of NN is just (1,0,0,---,0), so we have that

on On on

NTY = I ...
v det(g*) = det(N) = det(N*) = det(n, prtl mO )

8nD

thus the volume form in S can be expressed as

w:det(ng;,g;,.- ail;)d Adn® A - AdnP
= €igiyip” E;:: i;?:: e (27::; dn' Adn® A - A dnP
= €igiyoip” 887:11 887522 e ZT:;J %eh,h.,. jpdn?t Adn? Ao A dnP
= %det( 887?1 887?2 cee ;T:;)ejhh... pdn?t Adn?> A A dntP
= %det( , a?:l , 8?”:2 s 5‘?:]3 Ydn* A dn?? A --- A dn?P
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1 , Ont On2 Onip - :
= —€igiyipN”® dn’* Adn?? Ao A dn?P
D! o anjl 8’[1]‘2 871,]‘17
1 . . . .
= Eeioil..,mn“’dn“ Adn N --- Adn'?

we express it in this form for the reason that it’s coordinate independent so as to easily derive the pullback

of w by f to the volume tensor in N, that is

oo 1 G0 71 i ip _ dn  On % 1 2 D
fw—ﬁewl...mn dn" Adn** A--- Ndn —det(n,a—kl,a—kz,"-,%)dk ANdE“ A - ANdk

on the other hand, we know n = ﬁ, so we have

On On On r 1 or 0 ﬁ 1 Or 0‘% 1 or 8ﬁ
det(nyf,i’... ’7): et(7777 r—, ———— T g — —— r )
8]{?1 8k2 8]{/’D |I'| ‘I'| 8k‘1 8k1 |I‘| ak'g 8]'6‘2 |I‘| 8k‘D 8kD
— 1 d t( ﬁ ﬁ Or )
~ Jrp etr, ok, Dk, O

where we have use the fact that adding a column to another column doesn’t change the value of the

determinate. in conclusion, we have the following maps:

natural embeddin
BZ % §P cybedding pb+1

k i) X = f(k') natural e_1>nbedding m(x)

thus we have n(k) = m(f(k))

on On on oOm Om Om
[t i k 2 2y
det(n’ 6]{31 ’ 0/4;2’ ’ 8]{3D> Jf( )det(m’ 6371 ’ 81‘2’ ’ 8$D )Iif(k)
then we know
On On On or Or or

signJy(k) = sign det(n ) = sign det(r

767161787]{27“'7% 7%7%7"'7%)

since det(m, g—;‘;, gx‘z A %)m:f(k) is just v/h*g = y/¢* which is positive due to the fact that the metric

in RP*! is identity which is positive.

R.2 The degree of the map from BZ to sphere

as for the Dirac model, the hamiltonian write as

where these Dirac metrics are specified in the above sections for different symmetry classes and different
spatial dimension, since the flattened hamiltonian has the same eigen-states as the original one, we can

consider the flattened Hamiltonian

with n? = \TT\’ thus for each point k in the BZ(TP), these parameters lie in the sphere S when k goes
around the whole BZ, these vectors will wrap around the Sphere S”, so we can use the map n to distinguish

topologically distinct hamiltonian, the topological classification of this hamiltonian is just the homotopy
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groups [BZ, SP], and the topological number is just the degree of such map n, which is called the wrapping

number, defined as

1 1 . . . ,
degn] = — —€penipn0dnt Adn' A - A dn'P
VD BZ _D' o
= 7 eio...iDn“’aln“ 8277,12 tee 8DndeDk
D JBZ
_ 1 20 1 o ila iz ) iD Dk
= 7D - €ig-ipT |I‘|T‘H 1r T - 0pT d
D41
2 2

where Vp = is the volume of the D-Dimensional sphere. The above formula counts how many

DT
times the mag (n 2vmiap around the sphere as k go around the whole BZ.

there is an alternative way of calculating the above formula, we can pick up a fixed point ny in the
sphere, and find out how many points k; in the BZ which is mapped to this point by n, since the map
may be wrapping around the sphere through ny at k; in the normal direction or in the opposite direction,

this orientation is captured by the sign of the following Jocobian:

Jn(kl) = eioi..iDnZ"@ln“ng” cee 8D7IZD

k;

the the times of the map n; wrap around the sphere can be calculated as

degn] = Z signJ, (k)
k with n(k)=ng
if we choose proper ny that all the Jocabians are non-vanishing, so that the above sum is discrete and
finite.

R.3 The winding number represented as the wrapping number

fro the chiral symmetric system in the non-trivial complex class in odd dimension or the primary
series in the odd dimension, the hamiltonian are topologically classified by the so called winding number,

in D dimension, it read as
(=17 (25!

_ 2 b —-17.\D
v = () [

0

-1

where q is the off-diagonal part of the flattened hamiltonian Q) = (
q

g) when we choose the chiral

operator as o, ® I,,, we can compute that

o (1 0
S(QQ) —(0 o
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_ <(q—1dq)D 0 )
0 (¢ 'dq)”

thus we know tr(qg~'dg)” = —3tr(S(QdQ)"”), so we can write the winding number as

(D ER) i o (P! i

v = () [ je(sQaeP) = () 250 [u(s@dQ)?)

on the other hand, since we know that (QdQ)? = QdQQdQ = —QQdQdIQ = —(dQ)?, thus we have

D—-1

(QdQ)P = QdQ(QAQ)** = = (—1)"7T QdQ(dQ)P~* = (—1)"= Q(dQ)P thus we can write the winding
number as
D+1 (D;l)] 7 D+1 D—1 D
vo = () LI [T u(5q)”)

S Dl!(—%)” [ utsau)”)
(5Q

_ (—1)%(_1)%11),(—%)“1 /tr s

(dQ)")

since we know that QQ = Zio n'T;,thus we can express the above winding number as
tr(SQ(dQ)P) = tr(ST, Iy, --- Ty, )nodn™ A --- A dn'P
= tr(SF0F1 cee FD)eiOilu.iDni”dn“ VANKIERIVAN dniD
= —i¥tr(1)eioil...mniodn“ Ao Adn'P

thus the winding number is represented as

D+1 7 D+1 .D+1 io i i
vp=(-1)"=2 (- )V D'(—f) /—7, > tr(2)e€igiy.ipn'®dn' Ao A dn'P
D+1 1 D+1 1 i i1 i
=(-1)"2 tr(I)(2) /D'%“ apnldn™ A Adn'P

D+1 ]_ D+

= (1) (5) ™ r(T)degln]

we know that the dimension of the Dirac metrics is 2", thus tr(Z) = 2", for the complex series and the

primary series, we know that n = [%] =L L1 since D is odd for winding number, so
p+1,1 py1_pi1 D41
vp=(=1)"2(5)* 277 deg[n] = (~1)"*" deg[n] (1)
for the even series, we know that n = [2F2] = ££2 5o
pi1,1 p41_Dys Di1
vp =(=1)"7"(5)* 277 deg|n] = (~1)"*" 2deg|n] (2)

this is slightly different from the results derived in the original paper[1] by a factor of (—1)72", since this
factor is either +1 or -1 and it’s a global factor, which will not change the classification of topological
distinct phases. so we can clarify here this extra factor can be removed if we slightly change the definition

of the topological invariants.

R.4 The Chern number represented as the wrapping number

as for the Chern number, defined through the berry curvature can be represented as [3]

1,4, ”
Chyog = ()" [ ()
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in the following, we prove in the flattened hamiltonian, this can be expressed as

gl [ Hr(@@Q))

which is also proposed in the article[3].
since A%# = (u(k)|d|u? (k) = (u® (k)|0p, |u? (k))dk; so we have
FoP = dAYP + (AN A)*P
= g, ((u (&) [0, [u” (K)))dke; A dk; + (u® (k) [0, [u” (k) (u” (k) |0k, [u” (k) dk; A dk;
— (O, (), [ (K))) ey A s+ (™ (1)1, D (0)) )l A s + (0 (0|0, [ () (™ ()1, [ ()l A
= (O, u” (k) |Og, [u” (K)))dk; A dk; + (u® (k)| O, |u” (k) (u (k) |y, |u” (k) dk; A dk;

J

)
)
we can find that

tr(F) = ((Or; u” (k)|Ok, [u® (k)))dk; A dk; + (u (k)| O, |[u” (k) (u” (k)| [u® (k))dk; A dk;
= ((Ok, u” ()| O, |[u” (k) )k A d;
({Oh, (k)| O [u” (k) — (O, u” (K)|Oh, [u” (k) ) dbey A dy

since the second term is vanishing due to the fact that (u®(k)|0, |u” (k))(u” (k)|0, |u®(k)) is symmetric in
L)

(u® (k)| Ok, [u” (k) (u” (K)[ O, [u” (k) = (u (k)| O, |u” (k) (u” (k) |0, [u® (k)
since «,y is the summing indicator. besides dk; A dk; is anti-symmetric in 4, j.

use the expression for the berry curvature, we can find that

tr(F") = ((Ok;, u® (&) [, [u™ (k)))dkiy A djy + (u® (k)| [u (K)) (u™ (K)|Ok,, [u™ (k))dks, A dkj,
Ay, u™ (k)| D, [u™ (K)) )iy A dj, + (u™ (k)| O, [u” (k) (™ (k)| D, [u™ (K)) dki, A dkj,
A

Ay, w1 (K) | O, [u® (K)) )k, A dbj, + (= (k) O, [u™ (k) (u™ (K)[ D, [u (k))dks, A d;

in n

if we write lejn = ((Ok,, u”(k)[Ok;,

means that

u? (k) + (u*(k)|0g,, [u7(k))(u(k)|0k, |u’(k))), the above formula

tr(F) = EXB PP P g A dky A dkg, Adkg, A - A dkg, A d;,

i1,J1 7 92,j2 InsJIn

= Fz(f:fll Ffjt]’fZ e F‘iiyjjinhaeihjhiQ:jZ'” 77;7L7jndk:1 /\ dk2 /\ dk?) /\ dk4 /\ Tt /\ dk2n—1 /\ dk'Qn

= (D (O TF Py Foion) oamy bt A iy A dkg A dkig A<+ A dhigy -y A dliz,
cEeS?n

= AP E - By g Yk A dksy A dk Adka A - A digg—y A dkay,

where the A represent the anti-symmetric operator of 2n elements. in the flattened hamiltonian, we know
that @ =1—2P =1 —2[u*(k))(u*(k)|, so we have dQ = —2dP = —20y, (|u®(k))(u®(k)|)dk;, thus we have

Q(dQ)*™ = (1 — 2P)(—20k,, P)(—20y,, P) - - (=20, P)dk;, Ndki, \--- N dk;,,
= (_2)271(1 - 2P>8]€i1 P@;%P e 8]%2” P€i17i27... ,izndkl A dkg VAR dkgn

A~

= (=2)2"(1 — 2P)A(0, POyP - - - 05, P)dky A dky N - - - dkgy,
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= ((—2)2"A(61P82P 09 P) + (—2)2"+1PA(81P82P. -+ 09, P))dEky N dkgy A - - - dkoy,
on the other hand, we have

tr[A(Oy POLP - - - 85, P)]

= Atr[0, PO,P - - - Dy, P)

= Atr[0,P - - - 8y, PO, P)

= Atr[0,(1)P - Og2n-1)POsemyP] 0 =(1,2,3,--- ,2n) € §"
(=1)7tx[A(8; POLP - - - Dy, P)|

= (=1)?" Yx[A(8, POy P - - - 0, P)]

—tr[A(0, POy P - - - 95, P)]

— tr[A(0,POP - - 82, P)] = 0

since then, we have
tr(Q(dQ)*™) = (=2)*" T tr[PA(8, POLP - - - By P)|dky A dky A - - - dkay,

so in order to prove

Chymg = o) [ 6P = ()" [ (@)™

we only need to prove that
AR ED - Byrg ) = e[ PA(8, PO P - - 95, P)) = Atr[(PO, PO, P - - - 9, P)]
in the following, we prove the above formula

t2[(POLPOLP - 0o P)] = (un ([u™ ) (™ D (Ju) (u]) - Do (Ju ) (w5 u)

= (| (|0ru ) (™ [+ [u” ) (Dru ) (10207) (] + [u?) (Dpu]) - (|Ganu™) (| + [u) (Opnu|)u)

= ((u|On]u™ ) (u™ [ 4+ 6P 0ru™ [) (|0pu™) (u?| + [u) (O™ ) - - (|0nu™ ) (u | + [u) (Danu® ) |u®)

= ((u|Oau™ ) (™ [|0pu” ) (] + (u|0r[u*) 677 (Dgu” | + (Dru||02u) (u | + (Oru®[[u) (020 )O3 P - - - O Plu)
= ((u?[O0[u® ) [|0pu) + (Oru®[|0pu™)) (u? |05 P - - Oon Plu®)

= F2 (|05 P - 05, Plu®)

= FYyP R P (W05 P - - 05, Plu®)

= Fy Fgg ™ By (™ Ju)

_ a,B2 1B2,B4 Ban—2,P2n $2n,a
- F1,2 F3,4 ’ “an—1,2n 4

_ a,B2 B2,B4 Ban—2,a
- F1,2 F3,4 o 'F2n71,2n

= Fﬁ’zﬁlFﬁﬁz e FQB’r?:ign
since the 3; is summing indicator represent the occupied bands, and in the above, we have used that
(u|0nfu )87 P2 (Bpul2 | + (Dru||u’) (Dau™| = 01 ((u®[u))(Bpu™| = 0

thus we have proved the equivalence.
8o in the dimension D, we can write the Chern number as

Cho = 55 27(5) ¥ [ Q)"
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1 272 -1 1,4 b
= VDI‘?D;l)ZD“g!(Qir)z/tr[Q(dQ>D]

53 [ ulew@Q)?)
p-2 1 1

tr[Q(dQ)P = tr(Ty, Ty, - - - iy )ndn™ A -+ A dn'?
(F0F1 ce FD)EiOilu.iD’l’Liod’l’Lil VANERIVAN dniD

tr(Z)€igi,ipn®dn™ A--- A dn'P

thus the Chern number is just

for the primary series and the complex class, we know n = [25] = £ 5o tr(Z) = 2%, thus we have the
expression for the Chern number
Chp = (—1)¥deg[n}

for the even series, we know n = [ZH] = £ + 1, thus we have

Chp = (—1)¥2deg[n}

these results are also slightly different from that one in the paper [1] by a factor (—=1)"z, which I argue

that it can be removed since it’s a global factor equals to £1, which will not affect the classification.

R.5 The First Descendant 7, invariants represented as the wrapping number

for the first descendant, since they belongs to the real classes, we have followed the strategy by

imposing the parity on n by
n(k) = Pn(—k) P =diag{+1,—-1,—-1,—-1---,—1}

for the first Descendant for class X in D dimension, it can be derived as primary series for class X in D+1
dimension by imposing np,1(k) = 0, although this can not be straightforward derived since they have the
same symmetry, the only difference is the dimension of the base manifold k.

we can think of it by considering (ki1, k2, kp) = (k1,k2,+,kp,kp+1 = 0) in the D+1 dimensional
primary series in the same symmetry class. since under image n(kq, ko, -, kp) in the D+1 dimensional is
D dimensional sphere in D+1 dimension, which can always be continuously deformed to the case where
np+1(k) = 0 for the hamiltonian Zf:gl n'T'; parameterized by n(ky, k2, kp,kpi1) -

we consider two hamiltonians in the first descendants,n; (k), ny(k), then the path which connects this

two hamiltonian in the D41 dimension n;_,,(k, t)

n;_,» (k, 0) =1 (k), Il1_>2(k, 7T) = 1o (k)
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can be viewed as an elements in the primary series class hamiltonian, if we regard the extra time factor t

as extra dimension kp;; and imposing the required parity constrain
n1_>2(k,t) = Pn1_>2(*k, *t) - <t S 0

then we can define

deg,[n; ] = deg[n;_,,] mod 2

thus we declare two hamiltonians n,(k),ny(k) are topologically equal if deg,[n;_,2] = 0 and distinct if
degy[ng o] = 1.

there is one thing for us to clarify, deg,[n; ;5| is independent of the chosen path. since the sign of
Jacobian is signJ, = 1 mod 2, and we can chose a reference point in SP*!, namely the south pole
ny = (—1,0,0,---,0), if (k,¢) maps to the south pole, so does (—k, —t), since n;_,5(k,t) = Pn;_,»(—k, —1),
so if (k,t) # (—k,—t), it will give us two points which is zero in the sense of mod 2, thus we only need
to consider the high symmetry points in the BZ, we donated it as (k,0) and (k,7), where k is the high
symmetric point of the D dimensional BZ.

thus, we have

degy[ny ] = Z 1 mod 2

(k,t),m—2(k,t)=ng

_Z ”1a2kf) mod 2

K,
_ 0k _
:Z 1 nl(k) 1 nQ(k) mod 2
2 2

which only depends on n; (k), ny (k).

it’s more convenient to use the parity instead of 0 and 1, that is
Pi[ny,my] = (—1)%eealu]

if we choose a reference map n;(k) = (1,0,0---,0), then we define the parity of map n with respect to
this parity:
_ 1m0 —
Pin] = Pi[n,.f,n| = (-1 =z = Hno(k)
k

so for the map n(k), we can define

degfo) = 30 L)

where n is the map TP — SP by setting n?+! = 0,and then we have
deg,[n12] = deg[ni] + deg[n,]
thus n; (k), ny(k) are topological equivalent if
deg,[n1] = deg,[n]

and topological distinct if
deg,[n;] # deg,[no)]

and we can find that the parity of n is just

Piln] = (1t
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R.6 The Second Descendant 7, invariants represented as the wrapping number

for the Second Descendant in symmetry class X in D dimension, we can consider it as reduced from

D+1

the the same class X from the primary series in D+2 dimension by imposing nP*2? = n = 0, consider

the hamiltonian defined in dimension Dnamely, n;(k),ns(k). then following the above strategy, we can

define the path connecting this two hamiltonian n;_,5(k, )
Illi)g(k, 0) =1 (k) Illg,2<k, 7T> = 1y (k)

in which n;_,»(k, s) = Pn;_,o(—k, —s), this path define a map: TP*! — SP+2 which is an elements in the

first descendants in the symmetry class X. thus we can define
Py[ny,no] = Pi[ng 0]

which constitutes now a relative invariant between the two second descendant Hamiltonians. with the
same argument above, this quantity is independent of path chosen, which only rely on n; (k), ny(k).

after chosen a reference hamiltonian n,.; = (1,0,0,---), we can define the parity of the map n
Py[n] = Py[n.cs,n Hn 1)degaln]

where n is the map TP — SP by setting nP*2 = nP+1 =0

§4 Real Space Universal topological Marker|[2]

R.1 The real space representation of the wrapping number

in the above, we have derived the Unified topological invariants, the wrapping number, namely

1 1 io g, i i
deg[n] = Voo ) ﬁeiommn”dnl Adn A--- ANdn'P
= 7D qo...iDnloaln“agn” tee 8DnlDde
1 ip gD
= 7D /BZ eigwiDT | |D+1 817’ 627' 2. -8Dr bd~k
suppose the Dirac metrics used in the hamiltonian is {I'o,T'1, -+ ,Ip} and left {Tpi1,Tpia, -+ ,Tan}

unused , we can define
W =Tpy1,I'pya, -+ T2y

then we can find that

tI'[WQ(dQ)D] = tr[FD+1, FD+2) s ,anFZO,F“, e ,I’iD}ni"@jlnilajzniz s 8anidej1 A dka A A dk
= €ig,iq, - ﬁiDQ"i"nioajlnilann” ce 6jD’I’LiD€j17j2,... _’dekl A dkg VANCEIRWAN de
= QninD!Gio’il’... ,iDni”(?lnilagniz cee aD’I’LiDde

JjD

so we have

€ig,it, J'Dnlo(?ln“agn” e (9Dn’Dde

1
- S uVQUIQ)?)
= G IV QA0 - 9 Q)d K
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since then we can write the wrapping number as

D D

on the other hand, we can write the hamiltonian Q in terms of the projection of the valence band p =
[m){m

Zn7E,,L<EF [n){n| and conduction band ¢ = p = Zm7Em>EF

Q=q-p q+p=1
in this way we can write the above formula to the real space one using the strategy that

dPk 1

8j—>—in W—)ﬁ

in the following, we work out the explicit form of the real space formula, in the odd D case, we have

WQ01QQ - - 9pQ
=W(q —p)01Q0:Q - 0pQ
=Wqd1QdQ - 0pQ — WpdhQ:Q - - 9pQ
:2D(—1)¥Wq81p82q -+ Opp — 2D(—1)%Wp81q52p' - dpq
=(—1)"F 2P W (qd1pdaq -+ Opp + Wpdrqdap -+ Ipq)
=(=1)"27 3 S W{(ma)ma s (na) (na a(Jma) (ma] )3y ([n2) (na] - Op(Inog ) (nogs ) + (m > )}

mi~Mm p41 N1~ D41
2 2

2? Z Z WA{[m1)(ma|01|n1)(n1]02|mz)(ms2|0s|nz2) (nel - -- 3D|n¥><n%| + (m < n)}

mi~mp41 M1~ D41
2 2

D41

=(-1)"

since 0;Q) = 20;q = —20;p, where we use choose the form of 9;Q) accordingly so as to make sure the
occurrence of p and q alternative.

then use the following identity
(m|0;[n) = —i( W, | X;| ) (4)
where
<T‘\I/m(k)> = \Ilm,k('r) - Um,k(’l")eik'r = <T‘m(k)>eik'r

is the full wave function.
in order to prove this formula, we need to find the real space representation of the operator 9,, since
we know p = —id, in the real space representation, namely (x|p|y) = —i0,¢(z) from the fact that p is

the generator of the translation operator in real space

Tor) =|r+a) T.=1I—iep
since

(@|T|y) = (T1z][y)) = (x — €ly) = Y(z —¢)
= ¢~y (z) = (1 —ie(—id,)) (|y) = (z[(1 — iep)|s)
— —i0,¥(x) = (z|p|y)
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using the same strategy, we can find that £ = 0, in the momentum space representation of the operator
Z in the sense

10, (p) = (p|Z[¢)

thus we can prove the formula (4).

(m|0;n) = —i{m|X;[n) = —i(V,, | X;| V)
the second equality is due to the fact that X; is diagonal in the real space representation.so that the extra

phases factor can be cancelled since we evaluate it in the same point k.

since then, we have:

WQ01Q0:Q - 9pQ
=(-1)%F 2P > > Wlma)(ma|dsm ) (m|0ama) (ma|0s[ns) (ns| - Op|n o ) (nps | + (m > n)}

mi~m p41 N1~ D41
2 2

=122 3T ST W (W | — X W, (W, | = X W (W, | — X5 W, ) (W |-

mi~mp+1 M1~ D41
2 2

-~—iXD]\Pn%><\I/n%\+(m<—>n)}

:ZQD Z Z W{|\Pm1><\pm1|X1|\Iln1><\pn1|X2|\Ilm2><\1’m2‘X3|\Ilﬂ2><\j[ln2|

mi~mp+1 M1~ D41
2 2

Xl ) (B |+ (m 2 )

thus we have
dPk
/ Wtr[wczalczazc; 5@

=i2P

Z Z W{“I/ml ml|X1|\I/n1><\11n1|X2|\I/m2><\llm2|X3|\I/n2><\l’n2|

mi~m D+1 ni~n D+1

. de
- 5 0 0 X0 3 00 00 X2 3 o (09 X3 3 ) 0] -

L Xp Z )Ty | + (m o )}

n D+1

b Pk 4Pk
=42 tI‘ W{/ Z|\Pm1 m1|X1/(%T)DZ|‘I’"1><\I/”1|X2/W;|\Ilm2><\ljm2|X3
/ 27TDZ|\I]TL2 |-+ / Z |0 nD+1 nD;1|—|—(m<—>n)}]

nD+1

1
ﬁZ2Dtr[WQX1PX2Q s QXDP + WPX]_QXQP T PXDQ]

where the factor 5 comes from the correspondence [ (Qd:)kD — £ which one is the average over the first

BZ in momentum space and the other one is average over the unite cell in real space. besides,

d~k
o= [ 4 b 1)l = S BBl P= [ 55 3 )l = D10
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to represent the projection to the unoccupied (occupied) energy state of the lattice hamiltonian since they
are diagonal in the band level. and sum over k is just the whole tr of the big lattice hamiltonian.
in the above, we have used the fact that[4]

. ) 0
<\Il7l,k|x|qln’,k'> = Z5n,n’6k,k’ 9

oy 0
3 +6k’kliN/el(k 7k)xuz7k($)—un/7k/(x)dx

Ok
so that if k # k/, the extra matrix elements we have added is equal to zero.

the above formula can be derived from the following process

(W 5] W) = / 4 (T, 1) (]| )

’

= /dxxufhk(x)e_"kxungk/(x)eik”:
O ki), x
= [ dmi g (e e ()
- a 71’1}(1’»‘7]6') * . 7iz(k7k/) a *
o ([ e s (g (@) — i [ e D (@) ()
0

. . ix(k’— a *
1%571,7#51@,1« —z/dxe (k k)%wn,k(l‘))un’,k’(@

and the second term is proportional to 0y s since 5 (uf . (2))uu () can be think as independent of x
due to it’s periodic with periodicity lattice constant which is a small scale in the thermal dynamic limit.

for the case D is even, we have

WQ21Q%:Q -+ 9pQ
=W(q — p)01Q0:Q - 9pQ

=W q01Q0:Q - - IpQ — Wpd1Q0:Q - - - IpQ

=20(—1)FWqdipdaq - - - Opgq — 2P (—1) T Wpdigdap - - - Opp

=(—1)% 2P W (q01pdaq - - - Opg — Wpd1qdap - - Ipp)

=(-D%27 37 7 W{(ma)ma )i (na) (i )9a(fma) (mal)Bs(In2) (na] -+ Op(Im g ) (mep 1)) = (m > )}

mi~mp | Mi~Mp
zt1 T

=(-172% > > W{ma)(ma|]na)(na]dslma) (ma|0s|na) (nal - Oplmp ) (mp 4| — (m > n)}

mi~mMm p ni~nN p
3 +1 p)

:(_1)%2D Z Z W{‘\I/m1><\11m1| _ZX1|\II7L1><\I’TL1| _iX2|\IIm2><\Ijm2| _7/X3|\I/n2><\11n2|

mle%+1 n1~n%
—ZXD’\I’m%+1><\I/m%+1| — (m d n)}

:2D Z Z W{|\Ijm1><\ym1‘Xl‘\lj’ﬂ1><\1jn1|X2|\Ijm2><q}m2|X3|\I!n2><\1ln2|

m,le%+1 nlwn%
. .XD|\IJm%+1><\IJm%H| —(m<+n)}

thus we have

dPk
/ Wtf[WQ31Q32Q -+ 0pQ)]

=27 [ gl 35D WA o X5 )0 [ Xl o (s | X ) (B -

mi~mp ni~n p
P 2
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XplWy, N (m > n)}]

mp |_
PR

=2 / élﬁ)kD OV (W) (W, 1 X0 (W) (W, [ X2 D W) (W | X D [ W, ) ([

ma

- Xp > W N Wmp [ = (m = n)}]

mp
2t

:2Dtr[W{/(;i7T)kDZ|\Ilml)<\I!ml|X1/(;lTr)kDZ|\I/m><\Ifm|X2/ - )DZI‘I’W . |Xs
(%rDE:“%W oo XD/kiJZ S W MWy = (5 m))

1
2P [WQX, PX2Q - PXpQ — WPX,QX2P - QX pP)

so the wrapping number can be written as

1 en
LD Vp2nin

1
for the case D is odd, and can be written as

1 (2m)P
LD Vp2nin

Luier (0

2P WQX1PX2Q - PXpQ — WPX1QX,P -+ QXpP] = 5

degn] =

for the case D is even, where C is named as the topological operator. using the topological operator, we

can define the local and non-local topological marker as

C(r) = (r|C|r)
C(r,r') = <7"|C|r)

so in three dimension, the topological operator can be written as

Cs = (2‘7;) 2 2: ~W(QXPYQZP + PXQYPZQ) = Z?Q—WW(QXPYQZP + PXQYPZQ)
D

where n and W depends on different symmetry class.

in two dimension, the topological operator can be written as

02 (271') 2D 1

Vb 2ngn

W(QXPYQ ~ PXQYP) = 5

)

similarly, n and W depends on different symmetry class.

in one dimension, the topological operator can be written as

R D
¢ =i 90 L ioxp s pxo) = i3
VD 2n n

W(QXP+ PXQ)

in the following, we make some comments on the above results, we should notice that the factor 2"

comes from the product of all the Dirac matrices

tr[rD+larD+2a e 3F2ananzla e 7FiD]

so in practical calculation, we should organize the order of the Gamma matrices in W such that the above
formula holds, or equivalently, replace the factor 2" with tr[I'pi1,Tpyo, -+ ,2,00,'1, -+ ,['p], since
2" comes from the dimension of the Gamma matrices, so we should only replace ¢ with the scalar factor
of 'py1,I'pya, -+, oo, 'y, -+, I'p =Wy, I'y, -+, I'p.
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on the other hand, in the above formula, we have used the formula
(m|0j|n) = —i(¥ | X;|0,) (7)

which is valid for the infinity and continuous real space, if we use the finite lattice model with the periodic
boundary condition, we should use the exponential position operator, namely
(mlayn) = o (m|e" % n) (®)
27
since we know

P oS B L B
(1| |m) = (| LD et

1 in'5k|n>

:%<

L 2
= (m| " n)

mle = %<

L
2

modified as

¢"TXi is called the exponential position operator, if we use this one, the wrapping number should

1
deg[n] — Wdeg[n}
)° 2Pt [WQX, PX2Q - QXpP + WPX,QXoP - PXpQ| = L%tr[é] (9)

1 (2«
_ :D+1
deglal =7 75 7 gnn

for the case D is odd, and can be written as

p 1 (2P
degln] = i® —
egln] =" 75 1 g

for the even D case.

2P WQX 1 PX2Q - PXpQ — WPX1QX,P -+ QXpP] = L%tr[(j] (10)

R.2 Explicit form for different symmetry classes in three dimension

§.1 3D-AIII

D+1

for 3D AIII class, the Dirac metrics is 2" = 272

by []
B 0 toa] B 0 oD B 0 o3
n g1 0 7 () 0 s g3 0
(1 0 (0 —1
L U A P

the chiral operator is chosen as S = ~4, thus the hamiltonian is given by

= 4 dimension, then the five Dirac metrics are given

3
H(k) = Akyyi + Akyyo + Ak + (M + B K)ys

=1

The spinor of 3D class AIIl contains only annihilation operators, which we name generically as ¥ =

(ck71,ck72,ck73,ck74)T. in order to translate it to the lattice tight binding model, we have to make the

replacement k; = sin(k;), k¥ = 2(1—cos(k;)), thus the hamiltonian can be written as( in the lattice model)
3

=1
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3
= Asink,y, + Asink,y, + Asink,y; + (M + B Z 2(1 — cosk;))vs
=1

3
= Asink,y1 + Asink,y, + Asink,ys + (M + 6B)y; — 2B Z cos ks
=1

in order to translate this momentum hamiltonian to the real space lattice hamiltonian, we have to do

Fourier transform

r;-k

1 )
—1 ir; -k
Ck,] = E e Ci,g G = —— g e " TCk1
\/> VN 4

so we have

T ) _ 1 7’L‘I‘i+5-k il‘i-k/ T
E :Cz‘+s,IC%,J - N e € Ci, 10K, J
i

i kK
N geﬂrg kz T )Ck 16,7
= Z ef"s'kclt’lck/,J
K

using the above formula, we find

Y “sinkic] jes = 5 2 (i 1€ = Cix,1Cia) = 5 D _(Ciix, 1Cia = CipCivxi.)
k

% i

> f oL i
cos ki rCk.g = ) (Clyx, 1Cia + el x,,1Ci,7) (Cz+X, G0+ Cz [Ci+X1,0)
k

%

so we have

Asin kv

— s t t t t
= Asinky (0 164 + G203 + G302 + GaCin)

i
- A§ Z Z (C;r+x,zci,J - C;r,jci-m,J)

i (I,J)=(1,4),(2,3),(3,2),(4,1)

1
=43 D {(eliancia—clicivan) + (el patis — clotivas) + (clipatio — clgtivan) + (el aci1 — clycivan)}
7

Asin kv,

= Asink,(— zck 1Ck,4 T zck 9Ck,3 — icL?)ck’g + iCL4Ck,1)

— AL Z{ z+y 1Ci4 — 3,1Cz'+y,4) +i(c] City,2Ci3 — :-r,zci+y,3) - i(CLy,scw - 03,30i+y,2) +i(cf City,aCi,l — T,4Cz'+y,1)}

Asin k.73

T T T
= Asmk‘ (Ck 16,3 — Ck726k,4 + Ck73Ck$1 — Ck74Ck,2)

)
= Ag Z{(CLMCL:& - 03,1Ci+z,3) - (c;'r+z,20i,4 - Cz,zcz‘+z,4) + (Cj+z,36i,1 - Cz,gcwrz,l) - (CI+Z,4Ci,2 - Cj,4¢z‘+z,2)}
%
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(M +6B)vs
=(M+ 6B)(—iclt’lck73 — z'cLZCkA + Z.Clt’BCkJ + z'cl’4ck72)

= —Z(M + 6B) Z{C:’r,lciﬂ + 61’201‘74 — 03,361',1 — 01,401‘,2}
[

- 2B Z cos ks
1

= -2B g cos kl(—iclt,lck,g - ici,2ck,4 + icl,z,)ck,l + iclAck’z)
1

: Lo+ f f f f f
=128 E 5{(Ci+Xl,1ci73 + ng1cz'+Xz,3) + (Ci+Xl,2ci74 + C¢,20i+XL,4) - (Ci-i-Xl,?)CiJ + Ci,3ci+Xz,1)
1

— (el x,aCiz + ¢l ycivx, 2)}

collecting all the terms, we can write down the real space lattice hamiltonian as

A
vy E {CLMCM - CI,1Cz‘+rc,4 + 03+m,20z33 - Cz,zcwm,s}
7
A 4 f . t
tig Y {—ilel iy 1cia—clycivya) Hilcly, nis — clycinys)}
i
A
, t t T t
‘Hg E {(Ci+z,1ci73 - C¢,1Ci+z,3) - (Ci+z,2c7i,4 - Ci,20i+274)}
i

—i(M +6B) Z{cj,lcm + ¢l yciat

1
285 Y leixaciat el iciixs) + (el aCia + claciix, )}

i Xi=x,y,z
+H.c
in this case, we have n=2, W is the chiral operator W = ~,, and we have
2" — tI‘[F4F5F1F2F3] = 22
so the topological operator read as
327

Caparrr = i72 W(QXPYQZP + PXQY PZQ) = 87in:(QX PYQZP + PXQY PZQ)

$.2 3D-DIII-The B phase of superfluid *He

A concrete example of 3D class DIII is the B phase of superfluid *He[6][7]. in this case, we use the

representation of Dirac matrices in the Bernevig-Hughes-Zhang (BHZ) model[3][9]
s ={5:®0,,5,@1,5, 01,5, R 04,5, D0y}

where o; acts on the spin space and s; acts on the particle-hole space. we can find that there are 3 real

matrices and 2 purely imaginary matrices , which meet the requirement of the well-defined B
B= (5, ®0,)(s, ®1)(s, ® 0,) = —is, R0y

if we choose 79 = 5, ® I, the A = Byy = —I ® io, which is the time reversal operator of the Dirac
hamiltonian,namely T' = —I ® io, K, and if we choose the chiral operator to be S = s, ® o,,then the

particle-hole operator is

AS = (-1 ®ioy)(s, ®0oy) = —is, @1 - C = —is, ® [IK
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then the Dirac hamiltonian in the momentum space can be written as

H(k) = Asink,s, ® 0, + Asinkys, ® I + (—Asink,)s, @ o,
+ {2t(cos ky + cosk, + cosk,) — u}s, ® I

in order to convert this model to the real space lattice, we need to figure out the basis, which written in
the Nambu spinor as

7711 = (Clt,m C—k,1» Clt,y C k)
where C;T is the electron-like creation operator with momentum k and spin 1, c_y 4 is the hole-like creation

operator with momentum —k and spin 1. if we consider it in the Fourier transform sense, we can find that

1 —iR;k
Cptr = —F— E e e
k, T Tf ; 7,7

where c; 4 is the electron-like annihilation operator on lattice site R; with spin 1 and C;T is the hole-like
annihilation operator on lattice site R; with spin 1

the two set of basis (¢ 1, Cikm k.l s cik)i), (¢4, C;,T’ Cits c;r.’i) are connected by the usual Fourier trans-
form on lattice site R; with 4-degree of freedom, namely

dof = (e 1,1 te 4, )

in oder to convert the momentum space hamiltonian to the real space lattice one, we need to consider the
following terms

}: T _ 1 —iR;jk T —iR; kK .t
Cj,trcj+l,a’ - N e g ck,ae ! Ck’,(r’

i kK

- Ze—le Y ze—zR (k+k) T Clt’ ,

kk’

2 : —iR; k'
= e " 5k’,k/ck7gcl,)0,

k,k’

_E iRk f
e Cka —ka

_ —iR;k .t iRk
2 :CJ oCitlo’ = sze e T G o

7 kk
iRy -k —iR;-(k— k) T
e e Ck/ o!
-+ Z
k,k’
— E ele-k 5k,k’ck Gkl o
k,k’

— E e’LleC]";JCkU
k

— ZR k ZR_’+Z~](/ T
§ :CJ7UCJ+ZU’ - N§ :E :6 ’ Ck’,cr/

i kK
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1 R , /
_ —iR; -k E iR;-(k—k T
= N e 1 e ( )ck,ack/,g/
k,k’ J
—iR; kK
= E e 5k’k’ck’o'cii;/7”/

—iR; k
= E e " ck)gcl];g/
k

iR; k ’LR’ k
E CloCitla’ = sze o

J kK
E ele § e’LR -(k+k )Ck oCit o7
N
Y
= E R Ok, —k’ Ci, 0 Ck/ !

Kk’
_ E e_le.ka,aC—k,a/
k

so we have the following

1
ZCOS(RI k)ck acfk o’ T 52(020 ;+l ot ]a ;L la’) (11)

Z Sm Rl Ck o —k o T T 9 Z o 7+l a’ C}L}UC;—LU’) (12)

1
> cos(Ry - k)] e = 5 > (el peisrar + el peimier) (13)
k J
. )
Z Sln(Rl : k)cli,ack.,a’ = _5 Z(c;,acj-‘rl,a’ - C;'}acj—l,a/) (14)
k J
(R K ol 1 i i
Zcos( 1 K)CoCy o = 3 Z(cj,gchJ, + ¢joCi 1 q1) (15)
k J
. )
> sin(Ri - K)eod = 5 D (ot = CaCl_i00) (16)
k J
1
Z COS(R[ . k)Ck’gC,k,g/ = 5 Z(Cj’a‘cj+l7o-/ + Cj_’ng,l,g/) (17)
k J
. )
Z sin(R; - k)cx pC_k o = 3 Z(cj,acﬂl,(,/ — Cj.oCi—l,07) (18)
k

J

using the above formula, we find that

sink,o, ® s, = sink,, (ck Tc et Tkl — CITWCT_]w — C_k,|Ck )

At i
) Z G J+9: + 7% jfm) ) Z(Cmcj+m — CjtCia,t)
j
- i ‘
+t3 Z(Cj,icj+x,¢ —ch e )+ 3 > (CiaCivas = CiiCiza)
j

J

sink,I ® s, = sin ky(_icl,rcikn +ic x40 — iclt,¢cik,1, +ic_x k)
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72 D iy = i€y 5 > ilCinCivys = CinCimya)
: i

+

N =

j-v) T 5 Z —i(¢j4Citys = Cj1C—y,L)
J

J
R Pt i
Z i(¢) 1€y = CGuCiyy) T
j

sink,o, ® s, = sin kz(c;TcT_k7¢ +ckqrox + CIT(_yicT_va + Cc_k, Ck1)
; .
z tel -
9 2 (ichiny
J

1
el ) - 3 > (Cjatiaey — i)
i
1 7
+3 R R P A YR B D —(ChiCiat = ¢z
J j

5

2(cos k, 4 cosk, + cosk, )] ® s, = 2 Z cos k:(;(clT{’Tck7¢ — c_kﬁcim + chcm —cxicly )
1« ; 1
=2 2{5 Y (el serron el acimsn) -
4 J

.
3 Y (Cachisg +einel_sh)
7

+
B Z(Cj,lcjﬂw + Cj,icj'—é,i)}

J

1 1
+3 > (el eisn b eisy) -
j

using the commutation relations {c¢; ., cj150} = 0, {c;

,U,C;JF&U,} = 0 etc, we can simplifying the above
real space lattice hamiltonian to

Asink,o, ® s, = A Z(iC}_H.’TC;T — 1G4 Cjtat — ic}+x,¢0§,¢ +1¢),1Cj4a,1)
J

~ _ P Pt
AsinkyI ® s, = A Z(Cj+y,ch.,T + CitCiyt €y 1 Gy T CilCity,)
J

Asink,o, @ s, = A Z(ic}+z,¢ct7T + ic;{ﬁﬁc;i — 0Cj1Cjtz,| — 9Cj 1Cjtzrt)
J

2(cosk, + cosk, 4+ cosk,)[ ® s, =2 Z(C;ercm + C;Tcﬂm + c}%,icﬂ + c;r.’icjﬁ;’i)
6,

=2 Z (C;+5,ch,a + C;r-ygcj-l-&,a)

8,5,0

t o t
I®s. =) (|1 = iaciy +cf i1 — ) )
j

so the real space lattice hamiltonian for this model becomes

H(k) = Asink,s, ® 0, + Asinkys, ® I + (—Asink,)s, ® o,
+ {2t(cos ky + cosky, + cosk.) — u}s, ® I

- S I S 2 B S
—H=A Z(chJr:r,TCj,T =€ Gt = UG, € ) F ¢ 1Chka)
J

P P
+ A (el acht e + iy 1€ T Cucie)
J
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o TS B S <
—AY (ieg, (g Fich 40|~ i€ G ey — i€ C )
i

+ 2t Z(C}_H;,GCJ‘,U + C;,o.chré’o-)

6,5,0

i Pt t
— > (chiejr = ciac i+l ey — el )
j

if we write the lattice tight binding hamiltonian in terms of the coupling vector and matrices in the basis

dof = (e 1,h 1 e L h )

then they are

0 A 0 0 0 0 0
0 0 0 0 —iA 0 0
[—1,0,0] < [1,0,0]
0 0 0 —1 0 0 0 0
0 0 0 0 0 0 FYAN 0
0 A 0 0 0 0 0 0
0 0 0 0 A 0 0 0
[0,—1,0] <> [0,1,0] <
0 0 0 A 0 0 0 0
0 0 0 0 0 0 A 0
0 0 0 —iA 0 0 0 0
0 0 0 0 0 0 1A 0
0,0, 1] < [0,0,1] «
0 —iA 0 0 0 0 0 0
0 0 0 0 1A 0 0 0
—u 0 0 0
0 0 0
0,0,0] ¢ .
0 — i 0
0 0 I
t 0 0 0 t 0 0 0
0 —t 0 0 0 —t 0 0
—§ < 0+
0 t 0 0 t 0
0 0 —t 0 0 —t

where we have written the term parametrized by t in a more symmetric one
T T _ T T T T
2t E :(CH&,UCJ,G + Cj,acj+5,a) = (tcj+6,acj70 +1¢j 5 Cjts0 = 1Cj0Cit5 0 — tcj+6,ocj,a)
8,j,0 8,j.0

similarly, in this case, n=2 and W is the chiral operator I's = s, ® o, and
2" — tr[F5F3F1F2F4] = —22

so the topological operator can be written as

A 2
Canpiir = iS—.”W(QXPYQZP + PXQYPZQ) = —8mil's(QXPYQZP + PXQY PZQ)
nln
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$.3 3D-All-prototype Topological Insulators, Bi,Se; and BiyTe3 etc.

The 3D class All is relevant to prototype TIs such as Bi2Se3 and Bi2Te3, the Dirac matrices used in

the low energy effective hamiltonian is given by[10][11]
Fis ={0, 70,0y @ Tp,0, @ Ty, [ @7y, ] @ T, }
in this case, there is still 3 real matrices and 2 purely imaginary matrices. and the operator B is given by
B=(0,@7)(0,01)IRT,) =—ic, ®T,

and we choose 79 = I ® 7, and have A = By, = —io, ® I which is the time reversal operator squares to
-1. since 3D AII is in the first descendant series, we should omitted some factor d;(k) to derive the 3D

ATI class Dirac hamiltonian. we choose I's to be omitted, and consider the following Dirac hamiltonian
H(k)) = (M + Mlk?g + Mgki + Mgk’i)(I (%9 Tz) + Bok}zl ® Ty + AokyO'I ® Ty — Aokay ® T (19)
following the same strategy above, we k — sin k, k? — 2(1 — cos k),this model can be written as

H(k) = (M +2M; + 4M5 — 2M; cos k, — 2M; cos k, — 2Ms cos ky) (I & T,)
+ Bysink.I @ 7y + Agsinkyo, ® 7, — Agsink,o, @ 7,

in order to derive the real space lattice hamiltonian, we can consider the spinor in this case is written as
Pk = (Cks.t Chp.ts Cks.|» Ckp.y) |, Where s and p is the orbital degree of freedom which 7 acting on. following

the same strategy as that discussed in the 3D class AIII, we can find that

—iR; 'k

1
Ck,a,0 — T — E € / Cja,o
N J

iR,k

1
Cjao = —— E e ey
7,00 20,0
VN <

Z t _ iRkt
Cj,a,UCjJrl;O/ﬂT' - e Ck,a,ockﬂ',g/
j %
t 1 i t
— Y cos(Ri-k)f , koo = 5( C aoCitharo! T ) CiooCilalo)
2 j j

. + 1 + T
— E Sln<Rl : k)ck,oz,ackyo/val - _5( cj,a,acj"rlva/»a/ - Cj,oz,acj—lvalva/)
& J J

then we have the real space lattice hamiltonian associated with the above Dirac hamiltonian

(M +2My +AM3)I ® 7, = (M + 2M; + 4My)(cf , 1ot — € p+Chpt + Gy Chisit — Chp Chpid
_ t t t i
= (M +2M; +4M>) > (el acjar =l scipr+ el ciar =l 1cinn)
j
ksl — k i A T A
cos ksl ® 7, = cos J(Ck,s,¢ck,s,T Ck p,4Ck,p,1 + Ck,s,1Ck,5,0 — Cip | Ck,p,d

1
_ I
=3 > (e reisat e seimsan) = (e icitaps + ¢l prcisp)
I
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i i t t
+ (€ o 1 Citsst T € Cimbst) = (Cp Civopt +Cp Cimspl)}

sink.l @ 7y = sin k. (—icf | jcop 6, 0oy — 6 Cpy +icl, Cst)

1
=5 P S (R T SRS B (S N SRR SN IS
j

— (s Cirams — o i)+ (e ey — €y imasl)}

sin k0, ® 7o = sinky (e , +Cipt + A p1Cst + g Copt + L Closit)

i
=3 D (el crCirymt = €l arCimypd) + (€] rCivyss =l prcioys)
i

(e o Civppr = by iciypt) +(c], Gyt — €l Cimyst)}

sin ko © 7, = sinky (—ie) 1 0p = A0l 1 Ost T ic Gop i, Gost)
1

=35 D A orirams =l orCiaps) = (¢ 1iimss — €1 a)
j

(ch o Civamt = €y Cimapt) + (€, Criast — oy Cimnst)}

considering the extra chemical potential term —p the real space lattice hamiltonian can

j,a,0 €j,a,0C0,0

be written as[12]
_ f i i : i
H=—pY chyCao+ (M+2M +4M) > (ch icjar =l icipr b, ciar =, cin)
o 7

A
Y > { (el o riraps = ChiasCint) = (€] 4Civany — iy paCinn)} + He
7
.410
—iy D (el syt — iy arCins) + (€ prcivyan — by prCie )} + He
7
By
+ D { (el izt — € anCipt) = (€ Cipapy = by Cipa)} + Hee
j

f f f t
- M Z {€)e1Citost = ClpaCitopt T € o Citosl = Cp Civopi} + He
jo=2

t i t i
— M, Z {¢) s 1Ci405t = CipaCitopt + €l 1 Citssl = Chp Citapl} + Hoc
J,6=zy

in this class, n is also equal to 2 and W is equal to W =1'3 = 0, ® 7, and
2" — tr[F3F5F2F1F4] = —22

so the topological operator is

327
2ngn

Csp_nrr = i—W(QXPYQZP + PXQYPZQ) = —8mil'3(QXPYQZP + PXQY PZQ)

§.4 3D-CII

as for the 3D CII, since it’s in the second descendant series, we should construct the Dirac matrices

for the the primary series with the same symmetry, which is the 5D symmetry class CII, the Clifford
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algebra is C17, the Dirac metrics is at least 23 = 8 dimensional. we can construct it by induction from the

Clifford algebra C1° used in the previous discussion in 3D class AIIL. that is

V1 =Ty Q0 Q1)
VYo =Tz ® 0y QN
V3= Ta @02 DN
YM=TRI®n,
Vo =Ty @I @M,
Yo=I®@I®mn,

Y =1R1I®n,

where the previous five matrices form the Clifford algebra C1° which has been used in 3D class AIIL. in

order to make it as to that used in literature[13],[5], we can re-ordering these matrices, that is:

hi=m=7. 00, ®n,
Io=%=m"®0 &n
I3=13=m®0.,Qn,
li=nu=70Ien,
Ir=%=7,1Qn,
Is=v%=101®mn,
e =y =101®mn.

the product of all the real matrices is

B=-7,00,n,

the chiral operator is chosen as S =1's = I ® I ® 17,, and the matrix I'; is chosen to be the role of I'p, 1,
thus, we can find that
A=BlI'py =i, ®0,®n,

which serve as the particle hole operator which squares to -1 for the Dirac hamiltonian

Hk)y= Y  dl

i=1,2,3,4,5,7
and AS = i1, ® 0, ® I serve as the time reversal operator which squares to -1.

the real space lattice hamiltonian are less considering in the literature for this type of Dirac hamilto-
nian, so we ignore the real space lattice version of this one at present.

since CII is in the second descendant, we should set two d;(k) to be zero so as to use the dimensional
reduction, we choose d5 = dy = 0, thus the omitted matrices are I's,I'g,'; and we have n = [%] =3
and W =T'5,['g,'7, so the topological operator is

327

Csp_crr = 5 W(QXPYQZP + PXQYPZQ) = ~4milsTI'(QX PYQZP + PXQY PZQ)
TLZ”Z

§.5 3D-CI

since in 3D, symmetry class CI lies in the even series, we should consider the Clifford algebra C1?"+! =

Cl" with n = % = 3, which is the same as that discussed in the class CII, we can pick up a I'; as the
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chiral operator, namely S =I's = I ® I ® n,. in this case, we can choose I'y = —il'; and construct the

Dirac hamiltonian as[13]

H(k)= Y dT,

i=0,1,2,3

similarly, in this case the product of all the real matrices is
B=-1.®@0,®mn,
serve as the time reversal operator which squares to +1 and
BS=-1T.,®0,0in, = —T, ®io, @,

serve as the particle-hole operator which squares to -1.
since the real space lattice model of this type hamiltonian has been less discussed in the literature
due to the complexity of the 8 dimensional Dirac matrices, we ignore the real space lattice model for this

case at present.

since we only use I't,I'5,I'3,I'7, so W = I'yI'5, I', similarly, in this case n = [Z£2] = 3, so, we have
the topological operator can be written as
A 2
Csp_cr = ;iW(QXPYQZP + PXQYPZQ) = —4milyI'sT6(QXPYQZP + PXQY PZQ)
TLZTL

R.3 Explicit form for different symmetry classes in two dimension
§.1 2D-A-The Integer quantum hall effect

in the 2D, typical symmetry class A system is the well know quantum hall effect system, the Clifford
algebra for this case is spanned by the three Pauli matrices, and the Dirac hamiltonian can be written

as[12](at present we follow the convention used by the author of the article[2])
H(k) = Asink,o, + Asink,o, + (M + 4B — 2B cosk, — 2B cosky)o.

and the spinor can be written as ¥y = (cxs,ckp)’, where s and p donate the two degree of freedom in the

unite cell.using the sam strategy discussed in the 3D AIII class, we have:

E S klck,lck,J =3 (Ci+x,,,ICi,J - CFX,,,ICM) =3 (Ci+X1,ICi«,J - Ci,lci+Xz,J)
k i i
t _ 1 t t _ 1 t t
E :COS klck,ICkJ =3 (Ci+Xl,Ici-,J + Cz’—Xl,IciJ) =3 (Ci+Xl,ICi7J + Cz‘,ICi+Xz,J)
k

we have the real space lattice version of these terms

sin ko, = sin kx(clt’sckm + clipcks)

)
= 5 Z{(C}L‘—&-x,scj,:ﬂ - C;(',schrfL’,p) + (Cj‘—&-x,pcjxs - c;,pchrI,S)}
J

. . .t .t
sin ko, = sink, (—icy cxp +icy 0k s)

= 5 Z{_Z(C;r'-&-y,scjxp - C;(',schry,P) + Z(C;r‘—&-y,pcj,s - C;L',pcj+y75)}
J
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0z = (Clt,sckys - clt,pckap>

= (] oo = ¢} i)
j

cos kyo, = cosk,(c] (s —cf 2Ckp)

1
= 5 Z{(C;LHLz,scjys + C;r',scj-‘r-%s) - (C;r'+z,pcjyp + C;,pcj+$7p)}
J

— T T
coskyo, = cosky (¢, ,Cxs — G ,Ckp)

1
— 1 T 1 i
T2 Z{(C‘Hy,scﬂﬁs + ¢5.5Civy.s) = (Ciay pCip + € pCityp) }
J
finally, the real space lattice hamiltonian can be written as:[14][12]

H = (M +4B) Z(c}’scﬁs - c}’pcjyp) — ,uZ(c}scj,s + c}7pcj,p)
J J

1
+ A§ Z(C;+I7scj,p - c;,scj+iﬂ,17) + H.c
J
1
+ A§ Z(C;er,Scjup - c;,schr’é/’p) + H.c
J
1
- 235 Z(c;r-ﬂjscj,s - c;ﬂ’pcj’p) +H.c
J

1
o 2B§ Z(c;-l-y,scjfs - cj’-&-y,pcj’p) + H.c
J

where we have added the chemical potential term parameterized by wu.

in this case, we have n = [%] =1, and W=I since all the Pauli matrices are used and we have
2" — tr[o,0,0,] = 2i
so the topological operator is

Cop_u = %W(QXPYQ — PXQYP) = —2mi(QXPYQ — PXQY P)

§.2 2D-D-Spin-less chiral p-wave topological SCs

A concrete system that realizes the 2D class D is the spin-less chiral p-wave SC[13]. in this case, the
Clifford algebra is also spanned by the Dirac matrices, and the spinor is spanned by the Nambu spinor
without spin, namely v, = (e, cik)T, where the ¢ represent creation of electron-like quasi-particle with
momentum k and cT_k represent the creation of hole-like quasi-particle with momentum —k. the real space

lattice hamiltonian for this system is described by
H =) t(cjejes + cjy5¢) — 1) _cle;
J:6 J

+ Z A(—=i(cjcjre — CjCj_g) + i(c}+ch — c;_xc;) +(€jCjpy — CjCjry) + (c;[vﬂcj — c;_ycj))
J
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using the Fourier Transform

we can derive the Dirac model for this real space hamiltonian

1 P

3,6 3.6 kK
—Zthosk Rs) ckckutcosk Ry) ckck+Ztcos k- R(;) ' Cok
k,6 k,6 k,6

ch;cj = MZCle = chlck -+ chT_kc,k
J k k k

1 /
iR,k iR;1sk
CiCirs = — eI eI e
J

J kK
= E e ®okee )
k
= g —isin(Rs - k)cxe_x
k

since cxc_y is odd in k, the non-vanishing term must be also odd one in e~*®s¥ in the total hamiltonian,

but as for the specific block label by k, the elements is still e="*s*, so we need to add the term — 3= ¢;¢j45

to derive the odd coefficient, namely 2 sin ks(notice the Nambu spinor we have chosen)

— —iR;k iR 5K
E c]+6c Ng E e kel ol

J kK
= Z elRalkCT—kclt
k
= Zisin(Rg k)c!
k
so the momentums pace Dirac hamiltonian can be written as( in the Nambu spinor ¢, = (¢, ¢! )7)
H (k) = (tcosk, + tcosk, + %)02 + 2Asink,o, + 2Asink,o,

in this case, the product of the real Dirac matrices is B = 0,0, = —io,,and we choose vy = o, thus

A = B~y = o, which serve as the particle hole symmetry which squares to +1. we can verify this explicitly:

o H(—k) o, = —H(k)
similarly, in this case, we have n=1 and W=I and

2M" — trjo,0,0,] = 2i
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so the topological operator is

47
2nqn

Cop_p = —W(QXPYQ — PXQYP) = —21i(QXPYQ — PXQYP)

§.3 2D-DIII-Spin-less helical p-wave SC

similarly, as for the symmetry class DIII in 2 dimension, since it belongs to the first descendant series,

we can consider it as the reduction from the same class in 3D dimension, which is

H(k) = Asink,s, ® 0, + Asinkys, ® I + (—Asink,)s, ® o,
+ {2t(cos ky + cosky, + cosk.) — u}s. ® I

and the real space lattice hamiltonian

H(k) = Asink,s, ® 0, + Asinkys, ® I + (—Asink,)s, ® o,
+ {2t(cos ky + cosk, + cosk.) — u}s, ® I

- S I S 2 B S
—H=A Z(chJr:r,TCj,T — € Gt = 16, € ) F ¢ 1Chkay)
j

Pt P
A (€1 T ittt + a6+ L)
J

S S N S ,
-A Z(ch+z,¢cj,T i1, 4G~ 161G 1z — 16,112 1)
J

+ 2t Z(C}+6’0Cj7a- + c}’acﬁa,(,)
8,4,0

t t t t
1) (e = ey el ey —euel)
j

by setting the coefficients dy(k) = —Asink, = 0, or setting the term containing k., to be zero.
that is turning off(ignoring) all the the term related to the z spatial dimension, namely, cos k., sink., ¢,
etc. in this case n = [%] = 2 and the the omitted Dirac matrices are I'y,I's,thus W = I'yI's =

(52 ®04)(8, ® 0yy) =1 ® 0, and
2" — tI‘[F4F5F3P1P2] = —22

so the topological operator is

Cop_prir = %W(QXPYQ — PXQYP) = —aW(QXPYQ — PXQYP)

§.4 2D-AII

as for the symmetry class AIl in 2 dimension, we follow the general strategy discussed above. since
it belongs to the second descendant. we can consider it as the reduction from the symmetry class Al in

3 dimension, where we have discussed before.

H(k) = (M +2M; +4M5 — 2M, cos k, — 2M; cos k, — 2My cos k) (I ® T,)
+ Bysink,I ® 7, + Agsinkyo, ® 7, — Agsink,o, @ 7,

and the real space lattice version one

_ i i i i i
H=—pY oo+ (M+2M +4M) > (ch iejar =l iciprt+cl, car—cl, cin)

J,o,0 J
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- % Z{_(C;,S,chﬁ-w,p,i - C;'er,s,’rcj,p,i) - (C;,p,ch+fE75»~L - C;Jra:,p,’rcishL)} + H.c
J

- 270 D (el syt — iy arCins) + (€ prCivyas — €hyyprCie)} + He
J

+ % D {— (e asizpr — i rCipt) = (o Cipepy — €l Cip)} + He
i

- M Z (€] s qCitast = ClpnCivop + €l Cinoss =€l Cirops} + Hee

J,0==

T T T T
- M, Z (€ s1Cito51 = CjpaCitopt T Chs Citosl — Cjp Citopt} + Hee
J6=z,y

by setting the dy(k) = Bysink, = 0, namely by choosing By = 0.

in this case n=2 and W =131'y = i0, ® 7, and
2" — tr[T3F4T5F2F1] = 22
so the topological operator is

Cop_arr = %W(QXPYQ — PXQYP) =10, ®7.(QXPYQ — PXQYP)

§.5 2D-C

as for symmetry class C in 2D, since it belongs to the even series, we should consider the Clifford
algebra CI°. and pick up 3 out of five to serve as the basis for the Dirac hamiltonian. since only three are
need and we know the particle-hole operator behaves like ic, K (in algebra C1°, the product of all the real
matrices is —io, ® 7,). thus we can regrard o,,0,,0, as the chosen three and consider the particle-hole

operator as {0, K and thus then try to construct the Dirac hamiltonian.

H(k) = dlUI + dQO'y + ng'Z

in this case, we don not following the strategy used in the general discussion, so the constrain in the
coefficient d;(k) is not the same as before(where we use CI° to describe the even series).

in the following, we try to consider the constrain that with these coefficients, at first

o,K(H(-k))o,K = o,H(—k)*0, = 0,H(—k)" o,
= oy,(di(—=k)o, — da(—k)oy, + d3(—k)o.)o,

= —(di(=k)os + da(=k)oy + ds(—k)o-)

= —H(k)

so the particle-hole symmetry constrain would require that all the coefficients d;(k) should be even on k.

so we can write down the hamiltonian in the momentum space as[15]

H(k) = (% + 2tcosk, + 2tcosky)o, + A(2cos k, — cos ky)o, + 2Asin k, sin kyo,

where we have also used the Nambu spinor ¢, = (e, cT_k)T, in order to convert it to the real space lattice

hamiltonian, we have

(% + 2t cosk, + 2tcosky)o, = Zt(C;Cj+§ + C;+56j) — MZ c;cj
J

J:6
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where we have already done for the class D in 2D.
using the fact that has been derived before

1 . s
) ciciys = N DD eMikaeMire ke,
j

J kK

= E e ®okee )
k

= Z —isin(Rs - k)cxe_x
K

1 X X /
PIENEEED 9) DI
J

i kK
= Z eRok Tl kclt
k
= Zisin(R k)el
= 5 K)C kG
k
we can find that

(2cosk, — cosky)o, = Z(cjcjﬂ +cjcj_p + c;ﬂc; + c}_wcj-)
J

Tt (A
+ Z(_Cjcj+m —CiCja = Cj o€~ €y Cj)

J

as for the term sink,sink,, we should notice that sink,sink, = (e — e7r)(ehv — e~ihv) =

—J(ethethu) — githe=hy) _ i(“hethy) 4 i(=ke=ku)) thus we have(using the fact Y- c}c}M =Y e®kelel )

2sin k; sinkyo, = —2isin k, sin kycltcT_k +H.c

= %(ei(kw+ky) — ei(kw_ky) — ei(_kaﬁ‘k’y) + ei(_kw_ky))cltcik + H.c
_ it ot t ot t ot

= §(C}Cj+m+y + CiCiay = CCpry T CIC )+ Hoc

collecting all the term, the real space lattice hamiltonian can be written as [15]
H =Y tlclejes+chises) =) _cle
J,0 J

+ A Z(Cjcj'i'x + Cjcj—x + C}+IC;- + CT- CT)

Jj—x=j
J

+A Z(—cjcjﬂ — CjCjg — cj-ﬂc; - c;-ﬂcj-)
J

+clel )+ H.c}

z+y J )Ty

7
IR IR
+ {iA(chHery +CiCiia—y

ToT
—cjci_
in this case, we have n=1 and W=I, so the topological operator is

Cop_c = %W(QXPYQ — PXQYP) = —2mi(QXPYQ — PXQY P)

R.4 Explicit form for different symmetry classes in one dimension
$.1 1D-AIII

as for the 1D AIII class, the Clifford algebra is C1?, the Dirac matrices are just the three Pauli

matrices, and the Dirac hamiltonian in momentum space can be written as

H(k) = Ak,o, + (M + Bk?)o, = Asink,o, + (M + 2B — 2B cosk,)o.
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the chiral operator is chosen to be the S = o,.and we can convert the above one to the real space lattice
hamiltonian
H =Y (M+2B)(cl,cj1 — ¢ 5e;2)
J
Z _B(C;r',lcj"rf%l + C},1Cj—z,1 - C},zcwm,z - C},ch—z,z)
J

+

o]

t i
Y " —ilch eiunn =l ycjan) =il acipn — ¢j2)T¢jan
J

in this class,IW = S = 0, and n=1 and
2M" — trjoy 0.0, = 20
so the topological operator is

A 2
Cip—arrr = 2n - W(QXP+ PXQ) = +10,(QXP + PXQ)

$.2 1D-BDI-spinless SuSchrieffer-Heeger model

the example of symmetry class BDI in 1D is the spin-less SSH model, with 2 lattice site A and B in
each unite cell, A is the label for the creation of electron-like quasi-particle, B is the label for the creation

of hole-like quasi-particle, and the lattice hamiltonian can be written as[16]
H=> (t+dt)c! ye;5+ (t—dt)ch,, 4¢jn+ Hoe
J

in the spinor ¢y, = (¢ 4, cx, B), the momentum space hamiltonian can be written as

H(k) = (t+ d0t)o, + (t — 0t) cos kyo, + (t — 0t) sink, o,

= (t+ 0t + (t — ot) cosk,)o, + (t — 6t)sink, o,
in this case, the product of all the real matrices is B = 0,0, = i0, and the chiral operator is chosen to be
S =o0,, Y = 0, thus A = By = 0., so the the particle-hole operator is P = ¢, K, and the time reversal

operator is T' = I K, which both square to +1.

in this class n=1 and W = o, and
2M" — trjo,0,0,] = 20
so the topological operator is

2
Cip_Bpr = 12 i W(QXP+ PXQ)=+10.(QXP+ PXQ)

§.3 1D-D-spinless Kitaev p-wave SC chain

as for the 1D class D, we can derive it from 2D class D by induction(setting k, = 0), or we can

consider another concrete example, that is the spin-less Kitaev p-wave SC chain described by|[17]

H = g (ch iCita + c]ﬂ,cj E cf G

J

+ ZA CiCjta + Cj+:v ]

J
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we can use the Nambu spinor ¢; = (cj,c;)T or Y = (ck,cik)T, then convert this real space lattice

hamiltonian to the momentum space version
H(k) = (tcosk — p)o, + Asinko,
the particle hole operator is given by P = ¢, K, we can check that
PH(—k)P = —H(k)
in this case n=1 and W = o,, and
2"" — tr[o,0.0,] = —2i
so the topological operator is

A 2

§.4 1D-DIII

as for the symmetry class DIII in 1D, since it’s in the Second Descendant, it can be viewed as the
reduction from the same class in 2D, that is setting the term involve k, to vanishing in the Dirac model
for 2D DIII(which is also a reduction from the 3D DIII class.)

H(k) = Asink,s, ® 0, + Asinkys, ® I + (—Asink,)s, ® o,
+ {2t(cos k, + cosky, + cosk.) — u}s. ® I

and the real space lattice hamiltonian

H(k) = Asink,s, ® 0, + Asink,s, ® I + (—Asink,)s, ® o,
+ {2t(cos k, + cosk, + cosk,) — u}s, ® I

_ vt S
—H =AY (icl el —icjrciiay —icl,, cb | +icjicipmy)
j

P Pt
+ A (b sl F ey by, el e
j

o S S -
— A (i), chy Fich 40 |~ ieiaCi ) — i1 C 1)
j

+ 2t Z(C}_H;,UCJ',U + C;,ch+57o->

8,5,0

T T T T
— 1) (Cacit — iy £ ¢ 1y — Cuc )
J

by setting the coefficients involving k,, k. to be zero in the momentum space hamiltonian or any term
involving y and z in the real space lattice hamiltonian.

in this case, we have n=2 and W = (s, ® I)(s; ® 0,)(s, ® 0,) = is, ® 0, and
273" — tr[[oly T3] = —22
so the topological operator is

N 2 )
Cip-pirr = i W(QXP + PXQ) = —is, © 0.(QXP + PXQ)
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$.5 1D-CII
as for the symmetry class CII in 1D, since it belongs to the even series, if we follow the standard
strategy, then we should consider the Clifford algebra C1°, the Dirac matrices are given by

1—‘1~5 = {Ua: X Tz, Oy X TZ7I®TI7I®Ty7UZ ®Tz}

the product of all the real matrices is B = i0, ® 75, if we chose the chiral operator as S =1'5 = 0, ® 7.,
then the BS = o, ® 7,. so the time reversal operator is T' = 0, ® 7, /K and the particle-hole operator is
P =0, ® 7, which both square to -1.

if we choose vy = —i(0, @ 7,)(I ® 7,)({ ® 1) = 0, ® I, then the Dirac hamiltonian can be written as
H(k) = di(k)oy @ 7. + do(k)o, @ 1

this is the standard procedure. But we can choose new basis, so that our T' = i0, K and P = i1, K, and

then we can find the following form hamiltonian take this two symmetries:
H(k) =dy(k)o, @ T, + do(k)] @ 7,

we can set d; = Asink, dy = M + 2B — 2B cosk(d; ~ k,dy ~ M + k? in the linear expansion) then using
the spinor ¢y, = (¢k,1, C,2, Ck 3, ck,4)T, we can convert this momentum space hamiltonian to the real space

one with the same process discussed above

H(k) = Asin k(—icl’lck,g + icz’zck,él + icl’gck,l - iCZACk’Q)
+ (M +2B — 2B cos k:)(cz)lck,z + CL)QCk’l + 02,301@,4 + cz)4ck,3)
A
-3 > { (el iiuns — L iimns) + (€] oCiama — €] 5ina) + (¢ geipmn — €l geinn) = (¢ sejpmn — ¢ 4ej02)}
J
(M +2B) Y (chcjo+claein + ¢l a4 ¢l yejs)
J

—B Z{(C},lcjﬂz + C},lcj—m,z) + (C;r‘,2cj+a:,1 + C},zcj—ac,l) + (C;,gcj+m74 + C},scj—m) + (C;,4Cj+w,3 + C},4Cj—z73)}
j

in this case, n=2, and W =1'1I'4I'5 = i0, ® 7, = —iS and
27" — tr[[ Ty D5T3Ty) = 22
so the topological operator is

Chp-ort = i——W(QXP + PXQ) = z’%W(QXP +PXQ)

znin
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