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Model for a Quantum Hall Effect without Landau Levels:
Condensed-Matter Realization of the “Parity Anomaly”
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A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization
of the Hall conductance o* in the absence of an external magnetic field. Massless fermions without
spectral doubling occur at critical values of the model parameters, and exhibit the so-called “parity

anomaly” of (2+1)-dimensional field theories.
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The quantum Hall effect! (QHE) in two-dimensional
(2D) electron systems is usually associated with the pres-
ence of a uniform externally generated magnetic field,
which splits the spectrum of electron energy levels into
Landau levels. In this Letter I show how, in principle, a
QHE may also result from breaking of time-reversal
symmetry (i.e., magnetic ordering) without any net mag-
netic flux through the unit cell of a periodic 2D system.
In this case, the electron states retain their usual Bloch
state character.

The model presented here is also interesting in that if
its parameters are on a critical line at which its ground
state changes from the normal semiconductor state to
this new type of QHE state, its low-energy states simu-
late a “(2+1)-dimensional” relativistic quantum field
theory exhibiting the so-called “parity anomaly”? and a
(2+1)-D analog of *“chiral” fermions without the
opposite-chirality anomaly-canceling partners® that usu-
ally accompany them in lattice realizations of field
theories (“fermion doubling”).

In the zero-temperature limit, the transverse conduc-
tivity o™ of a periodic 2D electron system with a gap in
the single-particle density of states at the Fermi level
takes quantized values ve?/h, where v is generally ra-
tional, but can only take integer values in the absence of
electron interactions.* This property of a pure system is
stable against sufficiently weak disorder effects. Since
o™ is odd under time reversal, a nonzero value can only
occur if time-reversal invariance is broken.

In the usual QHE, the gap at the Fermi level results
from the splitting of the spectrum into Landau levels by
an external magnetic field. The scenario considered here
is different, and involves a 2D semimetal where there is a
degeneracy at isolated points in the Brillouin zone be-
tween the top of the valence band and the bottom of the
conduction band, that is associated with the presence of
both inversion symmetry and time-reversal invariance.
If inversion symmetry is broken, a gap opens and the sys-
tem becomes a normal semiconductor (v=0), but if the
gap opens because time-reversal invariance is broken the
system becomes a v= 11 integer QHE state. If both
perturbations are present, their relative strengths deter-

mine which type of state is realized.

To model a 2D semimetal, I use the “2D graphite”
model investigated previously by Semenoff°® as a possible
lattice realization of a (2+1)-D field theory with the
anomaly. 2D graphite has the honeycomb net structure,
consisting of two interpenetrating triangular lattices
(“A4” and “B” sublattices) with one lattice point of each
type per unit cell (Fig. 1). A 2D inversion (i.e., a rota-
tion in the plane by z) interchanges the two sublattices.
Since spin-orbit coupling effects will not be included, the
electron spin will (for the moment) be suppressed.

Semenoff> investigated the tight-binding model with
one orbital per site and a real hopping matrix element ¢,
between nearest neighbors on different sublattices, and
also considered the effect of an inversion-symmetry-
breaking on-site energy +M on A sites and —M on B
sites. The model has point group C¢, (M =0) or Cj,
(M=0). In this original version of the model, time-
reversalvinvariancesisspresent, and Semenoff*> found com-
plete cancellation of the anomaly in the M =0 model due
to fermion doubling, and normal semiconductor behavior
for M=0.

FIG. 1. The honeycomb-net model (“2D graphite™) showing
nearest-neighbor bonds (solid lines) and second-neighbor bonds
(dashed lines). Open and solid points, respectively, mark the A4
and B sublattice sites. ThenWigner=Seitzrunitucell is con-
veniently centered on the point of sixfold rotation symmetry
(marked “*”’) and is then bounded by the hexagon of nearest-
neighbor bonds. Arrows on second-neighbor bonds mark the
directions of positive phase hopping in the state with broken
time-reversal invariance.
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I now include a second real hopping term ¢, between
second-neighbor sites (i.e., between nearest-neighbor
sites on the same sublattice). This does not change the
space group, though it does eliminate a particle-hole
symmetry of the energy bands of the original model. To
break time-reversal invariance, I also add a periodic lo-
cal magnetic-flux density B(r) in the Z direction normal
to the 2D plane, with the full symmetry of the lattice,
and with zero total flux through the unit cell.

Since the net flux per unit cell vanishes, the vector po-
tential A(r) can be chosen to be periodic. The effect of
this local field is to multiply the matrix element for hop-
ping between sites by the unimodular phase factor
expli(e/h) fA-dr] where the integral is along the hop-
ping path, which I take to be rectilinear. The phases can
be chosen with any consistent convention such that the
total phase accumulated around a closed path adds up to
the flux enclosed in units of the flux quantum @
=|h/e].

Since closed paths of first-neighbor hops enclose com-
plete unit cells (and hence no net flux) the ¢, matrix ele-
ments are unaffected. The 7, matrix elements acquire a
phase ¢=21(2®,+®;,)/dy, where ®, and @&, are the
fluxes through the regions of the unit cell marked a and
b in Fig. 1. The hopping directions for which the ampli-

tudes are t,exp(+i¢) are shown in Fig. 1: It can be
seen that the Hamiltonian has acquired a chirality if the
local field is present.

It is useful to consider a possible model for the origin
of such an internal magnetic field. Magnetic dipole mo-
ments u, ordered ferromagnetically normal to the plane,
are placed at the center of each hexagonal cell of the
honeycomb net, and B(r) is the sum of their dipole
fields. Note that ferromagnetic ordering in 2D does not
generate a uniform component of the magnetic-flux den-
sity. The absolute value of ¢ is Ca’u/a, where a is the
fine-structure constant, u is the dipole moment in Bohr
magneton units, a is the lattice spacing Bohr radii, and C
is a dimensionless constant (of order unity) which de-
pends on the lattice structure. If 4 and a are of order
unity in their natural units, the phase ¢ in this model will
be a small quantity controlled by the fine-structure con-
stant.

To diagonalize the Hamiltonian, I use a basis of two-
component “spinors” (wi4,wxp) of Bloch states con-
structed on the two sublattices. Izetrajyazyassbesthendis-
placements from a B site to its three nearest-neighbor A4
sites, defined so that Z-a;xa, is positive. I also define
b, =a;—a3, by=aj;—a,, etc.; the set of displacements to
the six nearest neighbors on the same sublattice is
&b In this representation, the Hamiltonian becomes

H (k) =2t,cos¢ [Z,- cos(k- b,-)]1+z1 [Zi [cos(k-a;) o' +sin(k-a;)o?] ] + [M—thsincp [2,- sin(k- b,»)] ]63 , ()

where o' are Pauli matrices. The Brillouin zone is a
hexagon rotated 90° with respect to the Wigner-Seitz
unit cell: At its six corners (k-aj, k- a, k-a3) is a per-
mutation of (0,27/3, —2n/3). The two distinct corners
k? are defined so that k2-b; =(27/3)a, a= £ 1.

The energy bands are easily obtained. There are two
bands which only touch if all three Pauli matrix terms in
(1) have vanishing coefficients. This can only occur at
zone corners k¢, and then only if M =3\/§at2 sing. I will
assume |7o/t1| < §, which guarantees that the two
bands never overlap, and are separated by a finite gap
unless they touch.

If both M and t,sin¢ vanish, the bands touch at both
zone corners, where the group of the wave vector® has
the unitary subgroup Cj3,, which contains a reflection
that interchanges the A and B sublattices. Apart from
the zone center, these are the only points in the Brillouin
zone where this group has irreducible representations
with dimensions greater than unity, and the degenerate
states at these points belong to the two-dimensional rep-
resentation. The touching of the bands at two distinct
points in the Brillouin zone is a manifestation of fermion
doubling.>> The degeneracy of the bands at these points
is lifted either by nonzero M or nonzero t;sing, either of
which reduce the unitary subgroup to Cj, which has only
one-dimensional irreducible representations.

When the Fermi level lies in a gap between two bands,
Oxy is quantized at T=0, and its value can be obtained

2016

through the thermodynamic relation’ 6 =80/8Bo| .1
evaluated at Bo=0, where o is the 2D electric-charge
density, and By is the flux density of a uniform external
magnetic field in the Z direction. To calculate the in-
duced charge density o to a weak external magnetic
field, it is convenient to expand the Hamiltonian in the
neighborhood of the band extrema at the zone corners k?
to linear order in Sk=k—k?, and make the Landau-
Peierls substitution A 8k— IT, where IT=(IT*,IT”) is the
dynamical momentum with components satisfying the
commutation relation [IT*,IT’] =i AeB.

For weak By, coupling between the two distinct zone
corners can be neglected, and two independent effective
Hamiltonians H, are obtained, where

H,=c(l6?—M26"') +m.c?c3.

6))

Here c=31|a;|/h and m.c?=M —3+/3at,sing; I}
and T2 are Hermitian operators with the commutation
relation [I14,112] =iaeBoh, defined by

M +im2)=2Y e %%, - m)/|a] . 3)

After second-quantization, (2) is precisely the Hamil-
tonian of a free-fermion-field theory studied by Jackiw?
as an (2+1)-D analog of the Dirac Hamiltonian.

The spectrum of (2) is relativistic; for By =0,

€at (k) =% [(hck) 2+ (mec)V?,
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while for Bo=0, relativistic Landau levels are obtained?
as follows:

€an+ =t [(moc?)?+nh|eBo|c?1V? (n=1), (4a)
€q0=amgcsgn(eBy) . (4b)

Every n=1 level that evolves out of the upper band as
By is turned on is balanced by a level that evolves from
the lower band. However, the n =0 “zero-mode” energy
is not symmetric under Bo— — By: It evolves from the
upper band if am,eB, is positive, and from the lower
band if it is negative.

In the time-reversal symmetric case ¢;sing =0, the two
masses m+ and m - are equal, and the sum of the
Landau-level spectra derived from the two distinct zone
corners is particle-hole symmetric, and invariant under
Bo— —By. In this case, ™ =0 by time-reversal invari-
ance. As the Hamiltonian is changed, ¢ remains in-
variant, provided the Fermi level remains in a gap.*
When By =0, models where the Fermi level is in the gap
and m+ and m - have the same sign can evolve continu-
ously from the time-reversal invariant case, and hence
have ¢* =0.

To calculate ¢ for models where m + and m - have
opposite signs, 1 continuously turn on the external field,
then vary m+ and m - until they become equal, at the
same time varying the Fermi level so at all times it lies in
a gap. Comparison of the occupation numbers of the
Landau levels obtained this way with those obtained by
continuously applying the field to the time-reversal in-
variant system shows that they differ by the complete
filling of one Landau level. Thus at T=0 and with a
fixed chemical potential, the application of a weak exter-
nal magnetic field to a system where m 4+ and m - have
opposite signs induces an extra field-dependent ground-
state charge density Ac= =+ e2By/h relative to the field-
independent charge density when these parameters have

3V3 v=0
M Al
r, O
-3V3] v=0
- 0 T

FIG. 2. Phase diagram of the spinless electron model with
|t2/21] < ¥. Zero-field quantum Hall effect phases (v=*1,
where 6 =ve?/h) occur if | M/t,| <3+/3|sing|. This figure
assumes that ¢, is positive; if it is negative, v changes sign. At
the phase boundaries separating the anomalous and normal
(v=0) semiconductor phases, the low-energy excitations of the
model simulate undoubled massless chiral relativistic fermions.

the same sign. This allows o™ in the limit Bo=0 to be
evaluated as ve?/h, where v=% [sgn(m-) —sgn(m4)]
==1 or 0. The phase diagram of v for the spinless
electron model as a function of M/t and ¢ is shown in
Fig. 2.

I note that when the model has neither an inversion
center nor time-reversal invariance (i.e., when both M
and t,sing are nonzero), so |m+|=|m_|, the spec-
trum is no longer invariant under k— —k, and the
fermion-doubling principle is defeated. In particular,
along the critical lines in the phase diagram where one of
m+ or m — vanishes, the model has a low-lying massless
spectrum simulating nondegenerate relativistic chiral
fermions.

When m,=0, the fermion field theory derived from
the expansion (2) about the Fermi point with vanishing
gap has a charge-conjugation symmetry (particle-hole
symmetry) which is not present in the lattice model with
t,#0 from which it is derived. In the continuum field
theory, there is no lower bound to the Dirac sea of filled
electron states, and the establishment of absolute as op-
posed to relative values of o is ambiguous. Jackiw? in-
vokes the charge-conjugation symmetry of (2) with
m,=0 to assign the value o”=0 in the case of a
particle-hole symmetric Fermi level, where the “zero-
mode” Landau level (4b) is half filled. This would imply
a quantum Hall effect with v= 1 a if the zero mode is
filled, and v=—fa if it is empty. This suggests
‘“charge fractionalization,” and violates the principle
that a noninteracting electron system can only exhibit an
integral QHE. The model studied here shows how the
high-energy cutoff structure of a model with undoubled
fermions described by the relativistic Hamiltonian (2) at
low energies must break the charge-conjugation symme-
try, and give an extra contribution of * + to v, restor-
ing an integral QHE. Thus even if the low-energy spec-
trum consists of undoubled chiral fermions, their
partners must be present at high energies to restore a
properly integral QHE.

When electron spin is included without any other
change, there is an equal contribution from both spin
components, and ¢ is doubled. However, a periodic lo-
cal magnetic field with the full symmetry of the lattice
will also couple to electrons with a Zeeman term H'
=vy¢S?, where S’ is the azimuthal electron spin. This
term will relatively displace the up-spin and down-spin
bands by an energy yh¢, and if this exceeds the gap at
the Fermi level, the system will become a partially spin-
polarized metal. If + | y|# exceeds 3v/3|7,], the QHE
phases are completely eliminated, but if it is smaller,
they survive for small enough M and t,sing. (The direct
transition from the normal to the anomalous semicon-
ductor phase as M is varied is then replaced by an inter-
mediate spin-polarized metallic phase.) For the realiza-
tion of the internal field proposed earlier, ¥~ (in units of
the rydberg) is given by C'g/a?, where C' is another
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geometrical constant of order unity, and g is the Landé g
factor for the electrons.

While the particular model presented here is unlikely
to be directly physically realizable, it indicates that, at
least in principle, the QHE can be placed in the wider
context of phenomena associated with broken time-
reversal invariance, and does not necessarily require
external magnetic fields, but could occur as a conse-
quence of magnetic ordering in a quasi-two-dimensional
system.

This requirement is not fulfilled by the physical system
(a domain wall in a PbTe-type semiconductor) in which
Fradkin, Dagotto, and Boyanovsky® (FDB) have recent-
ly proposed related effects may be realized. In this mod-
el, spin-orbit coupling is supposed to give rise to the
effect, but this does not break time-reversal symmetry.
In fact, in “simplifying” the p bands of the Hamiltonian
that describes PbTe, FDB introduce an unphysical
effective spin-dependent hopping term that is odd under
time reversal, and thus break the time-reversal invari-
ance of the original physically motivated model. This,
rather than any topological character of the domain wall,
is the reason that FDB find the “parity anomaly” at the
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end of their calculation.
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