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§1 GENERAL HONEYCOMB LATTICE AND ITS PROPERTIES

Figure 1: the structure of the honeycomb lattice and the Figure 2: the basis for the unite cell in real space and
corresponding unite vectors(basis) in the real space, there the corresponding reciprocal space

are two kinds of choice for the unite cell.

§1 General Honeycomb Lattice and Its Properties

.1 Basic Lattice Structure

Honeycomb lattice is a very important system, many important models are constructed from it, so
in this part, we make some efforts to think about this model in more details. as the Figure 1 shows.

this lattice consists of regular hexagon, these regular hexagons fill the whole two dimensional real
space.

there are two kinds of choice for the unite cell, suppose the side length of the regular hexagon is a,
this is also the distance for the nearest carbon atoms. then one choice of the unite cell consists of the

following two basis

V3

2
d, =2 x acos %i =V3ai @ = Rz(i){jl = _TG@ 4 iag

3
these two unite vectors are related to each other by a rotation of 2{ along the z direction.if we define

a3z = Z, then we can calculate the basis for the reciprocal space

— — 3,4 V3 o~
X sar + S=a 2 3
bmon BXB g eft ey 2n . V3,
ap - az X as %(IQ V3a 3
as X ay \/gag] 2 23 .
by = 21— — =27 = ( 9)
a-as X ds %Cﬂ V3a© 3

another kind choice of the unite vectors in the real space is

. . - L 3 X
a; =2 X acos Em =V3ai @y = RZ(E)al = £cw; + —ay
6 3 2 2
these two unite vectors are related to each other by a rotation of F along the z direction. and the

corresponding basis in the reciprocal space is

b 5 as X as %ax — ?a@ 2T (i V3 )
= i = = xr — —
! dy - Gy X a3 %CL? V3a 37
13 X a1 V3aj 21 2V3 .
bg = 271'_, =

al-agxa_’: WL\Q/EG2:\/§Q< 3 9)




§1 GENERAL HONEYCOMB LATTICE AND ITS PROPERTIES

s

since these two kinds of choice are related to each other by a rotation(rotate the whole system % along

the z axes), and we often use the latter one.
in order to make the whole system looks more symmetric, we can rotate the whole system along the

z axes Z counterclockwise, then the corresponding lattice vectors are

6
L3 NEE

™

(_7:1 — RZ(—g)al = 504.’,12' - TGy (1)
3 3
@ = Ru(~5)a = Sai + \gagj 2)

the reciprocal lattice vectors are

I P

by — R.( 6)b1 = E(?x ) (3)
o R = 2 (W 4) (@)

we can see these basis vectors transform to a more symmetric way as in the Figure 2. then using these
lattice vectors in the reciprocal space, we can plot the first BZ and indicate some important symmetric

points of the honeycomb system.

R.2 Honeycomb lattice derivation from FCC lattice
for fcc lattice, the eight vortex coordinates are (in the basis e, = (1,0,0)%,e, = (0,1,0)T,e, =
(0,0,1)7)
‘/1 = (070a0)T ‘/8 = (17 13 1)T
Vy = (1,0,0)" Vi = (0,1,0)" Vi =(0,0,1)"
Vs = (1,1,0)7 Ve=(101)"  Vr=(0,1,1)"

and coordinates for the six face center are:

11 11
F1:(§7§70)T F6:(§7§7]-)T
1 1 1 1
F2:(§7O7§)T F5:(§717§)T
11 11
Fy=(0,-,2)" Fo=(1,-,2)"
3 (052)2) 6 (7 52)

if we look from the [1,1,1] direction, where should these sites locate? in order to figure out this, we should
at first put V1 Vg direction as the new € direction and use it to create new basis €, and €. then check

the coordinates for these points in this new basis. so we establish that

=/

1
€, = (es, ey, ez)%(l, 1, 1)T

1
gr/ = (efbv e?ﬁez)i(lv 17 _Q)T

S

=/

1
e/ =¢e!/ xé! = (e, ey e)—=(—1,1,0)"

! V2
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§1 GENERAL HONEYCOMB LATTICE AND ITS PROPERTIES

or equivalently

(é)xla gy/a é!) = (em €y, ez)U

where
1 =1 1
V6 V2 V3
— 1 1 1
U=| % ¥ & (5)
=2 0 1
V6 V3
and we have
1 1 =2
V6 V6 V6
-1 _ T —1 1
vtl=ut=| % & 0 (6)
1 1 1
Ve V3 V3
since the vector V' = (s, ey, €.)X = (€/,€,,8/)U" X so the new coordinate in the new frame (€, €,,€,)

is
X' =U"'X=U'X

so the new coordinate for V; is (0,0,0)7 for Vg is

1 1 -2
) ARV 1 .
X,=U'1,1,1)T = = % 0 1 = (0,0,v3)
1 L 1 1
V3 V3 V3
so if we look from the [1,1,1] direction, V;, Vg are both located at the origin (0,0)”. similarly, for Vs, we
have
U T, 1
X, =U"(1,0,0)" = =1 L 0 0 =(—=,——, —)
) ) \/5 \/§ ) )
1 1 1 0 6 2 V3
V3 V3 V3
for V3, we have
1 1L =2 0
T . Y Y. 11,
X, =U%0,1,0)" = = =+ 0 = (7= 7 7
VY S 0
for V,, we have
1 1 =2
T . VIR R o1,
X, =U"0,0,1)" = =1 1 0 = (—,0,—=)
k) b \/5 \/5 ) )
V3 V3 V3
for Vi, we have
1 1 =2 1
T . VR R R
xt=vf1,,07=| =t L ¢ =(—%=,0,—%)
) b \/5 \/5 ) )
1 1 1 0 Ve V3
V3 V3 V3
for Vi, we have
1 1 =2
T . Y Y. 12,
r_ _ —1 1 _
Xﬁ_U (17071) - V2 V2 0 _(76772773)
1 1 1
V3 V3 V3

3 of 29



§2 GRAPHENE AND ITS PROPERTIES

Figure 3: fcc lattice look from [111] direction

for V7, we have

I 0
; . V6 6 V6 -1 1 2.
! _ —1 1 —
Al A R S IRV
1 1 1
VR 1
similarly, for the face center, we have
1 1 1
Xp = z(X5+ X)) = (—=,0,—=)"
F1 2( 2+ 3) (\/6707 \/g)
1 1 2
XI :7X/ XI — 7T
F6 2( 6+ 7) (\/6707 \/g)
1 -1 1 1
Xpy==(X5+ X)) =(—x=,———=, —)"
F2 2( 2 1) (2 6 2v2 3)
1 1 1 2
XI :7X/+X, — 7’777’1—'
F5 2( 5 7) (2 NG 3)
-1 1 1
Xl — X/+XI — , , T
1 1 1 2
X ==(XI+ X)) =(—=,——,—=)7T
o= NN =G e VB

so, when we look from [1,1,1] direction, the whole graph looks as Figure 3.

§2 Graphene and Its Properties

.1 Basic Configuration

as for graphene, it‘s just the honeycomb lattice with two different atoms in each unite cell, we can
draw its structure and the corresponding BZ as the Figure 4 illustration.

The lattice vectors for the graphene structure are:

i =53, —V3) Gy = (3, V3)

and the vectors connecting the nearest coupling are:

5 = 3(1, V3) 6y = 3(1, —V3) 65 =—a(1,0)
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§2 GRAPHENE AND ITS PROPERTIES

K/

b1

Figure 4: the lattice structure of the graphene and the corresponding Brillouin Zone. Left: the lattice structure,
a1 = £(3,—V3) and a2 = £(3,V/3) are the lattice vectors and 01 = #(—a1 + 2a2) = 2(1,V3),02 = 1(2a1 — a2) =

5(1, —V/3),05 = —%(al + a2) = —a(1,0) are the vectors connecting the nearest couplings. Right: the first BZ for
the graphene, by = %(%, —1) and by = jga(é, 1) are the lattice vector for the reciprocal lattice. I' = (0,0),
K =2bi + tby = %(?,—%),K’ =2by + s = %(?, 3), M = 3(b1 +by) = %(?,0) are the high symmetric

points in the Brillouin Zone. and a is the length of the nearest bond.

the lattice vectors for the reciprocal lattice are:

- L SRVE] - 27 /3
b1zﬁ(?a*1) by = ——(—

and there are many high symmetric points in the BZ which read as

27r\/§1K, 21 V3 1 21 /3

I'=(0,0) K:E( 3) :E(?ag) M= —(—

37 3
R.2 Bulk Properties

as for graphene, we can write down the lattice tight binding model which read as

H=—t Z (a;r)objyg +H.c)—t Z (a;r,[,ajp + b;abj,g + H.c)
<ij>,0 <<ij>>,0

the first term is the nearest coupling term for different kinds of atoms and the second term is the next
nearest coupling of the same kind of atoms for both A and B atoms.

since when we translate the unite cell with integer combination of the lattice unite vectors we can
fill the whole space and in each such translated unite cell, there are only one of each A and B atoms, so
we can use 7, , to label the position of the translated unite cell with respect to the original one, which
means that

Tm,n = Ma1 + Nds

and the position of the A and B atom in the primary unite cell is 74 and rg. then we can find that

TA(B),m,n = TA(B) + Ma1 + Nay
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§2 GRAPHENE AND ITS PROPERTIES

in order to derive the properties in the bulk, we should choose the periodic boundary condition and in
each direction there are N7 and N sites.then the Fourier transform is(k; = Ilz,—llll and ko = J’%lg is along
the by and by namely, (kq,k2) = kiby + kQBQ)

—i(k1,k2)-TA(B),m T CABY o

CA(B) k1,kz,0 \/7 Z

1

= E i(k1,k2) T A(B),m,n
CA(B),m,n,0c = o= € TN CA(B) K ka0
,m,n, NN, Kike,
122 k1,k2
then we have
E (a] ! bja + H.c)
<%,j>,0
]' T —7;(’{)1 k}z)-’r'A Z(k/ ]i)/)“FB 1
= E , E , Ay ks obk’ivkéﬂe ' e e+ H.ce
N1N2 ;o e
<(m’n)»(lvs)>:‘7 (k11k2)a(k1vk2)
1 3
) ) e,
— a;fe L Ubkllvkélgel(klykz)*s,l,s( 6_1(k17k2)‘6z)e i(k1,k5)TB1,s + H.c
E:NlNQ 2: 1,k2, , 2:
(1,s),0 (k1,k2), (K k5) i=1
3
_ } : T —i(k1,k2)6;
— akhkwbki,kwékhki5;627%( e i(k1,k2) 1,)+H.c
(k1,k2),(k,k5),0 i=1
3
—i(k1,k2)-Siy 1
> e )@k, g0 Oks koo + Hec
(k1,k2),0 =1
similarly, we have
E , (a; ! oo + H.c)
<<Lt,j>>,0
1 . ! ’
= § E azl k2, aak) /€27Ue (kl)k2).TA’m’nel(kl’kZ).rB’l"s + H.c

N N.
<(m,n),(l,8)>,0 14¥2

1
=3 >
(1:5),

NiN;

(k1.k2), (k7 ,k5)

i —i(k1,k2)rB1,s (k] ,k5) TE.Is
g AL, ey Ok K€ e\F1:fz («--)+H.c
(k1,k2), (k] ,k5)

<_ . ) — (efi(kl,kz)-al 4 e*i(k1,k2)-a2 + efi(krl,kQ).(anal) + e*i(kl,kz)-fal + efi(kl,krgyfag 4 e*i(kl,k2)~7(a27a1))

1
_ T
= 5 ( o )akl,kz,aakhk*zﬁ +Hec
(k1,k2),0
= (- )aT a
- k1,ko,0%k1,k2,0
(k1,k2),0

where the extra factor of % comes from that when we counts the next nearest bonds, we have count each
bond for twice when we sum over all the cells(because there is H.c means that the bond is un-directional),
besider (- ) = (e~ ikt hk2) a1y g=ilhika)az g g=ilkska)(az—ar) 4 g=i(krka)—a1 4 g=i(krka)—az 4 g=i(k1k2)—(az=a1))
in the above equation. with the same calculation, we know that

> (bl ,bjo+ He)

<<i,j>>,0

= Z ( o )bzl,kz,obkhkzya

(k1,k2),0

so after collecting all the terms, we know that the hamiltonian in momentum space is

3
Z {(_t(z eZ(kl’kZ).ai)all,kz,abkhkmcf + H'C) - t/((' o )all,kz,aakhkma + ( o )bll,kz,abkhkma)}

(k}l,kz),o‘ =1
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§2 GRAPHENE AND ITS PROPERTIES

since the spin degree of freedom is degeneracy and we can use the the following basis

T
Yk ,kz,0 = (akukz»(ﬂ bk’hkz,a)

then we have

T
Z 7k17k2,0H(k17k2)7k17k270
(k:l,k‘g),o'

where the metrics H read as

ft/( ) —t Zl e~ i(k1,k2)-0;
Hey k) = gk k2)-5; 1/ (7)
—t Z 1,k2) —t ( .. )

the energy spectrum is

3
By = —t'(--) £ 1] Y e
i=1

since we know that

27r\/§ - 27T\/§

by = (%2, 21) by = (22,1
1 \/§a< 3 ) 2 = \[CL( )
5031:%(1,—\/@andf)g:%(l,\@)and@l-alz‘%":ga,bg-agz%l:%aandl;g-alzl;yag:(),so
we have
Bk, = B, 5 ket 22

and we can calculate the spectrum in Ey, j, as(ky = (ky — %)bl,kg (ko + & )bg)

. ky \ 3 ky . ky ku
—t/("‘) _ _t/(efz(kwfﬁ)%a_f_e i(ky )2 +ez(kw7f)fae i(ky+—L ) +CC>
_ _t/(e—i(kx—%)%a +€—i(km+%)%a + e—i\/gaky —|—C.C)
3 3
= —t'(2cos(V3ak,) + 4cos(§akw) cos(\gaky))
= —t'f(k)

where we have defined f(k) = 2 cos(v/3ak,) + 4 cos(3ak,) Cos(éaky)

3
_tzeﬂ‘(kl,i@).&i _ _t(efi(%akz+§aky) + efi(%aszgaky) + efi(fakz)>

which means that

| — tz efl(kl k2)-

v+ cc)+ (e i(—Sak, — LB ak,) teo)+ (ez‘(—gakz-s-@aky) +ec)

3+ f(k)

collecting all these terms, we can find that the spectrum of the graphene is

=—t'f(k) £ty/3+ f(k
since we have

FRATIE) = 2cos(fa(\fkm+;ky))+4cos(§a(;kz ‘fk ))Cos(ﬁa(f ot L)
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§2 GRAPHENE AND ITS PROPERTIES

1
= 2cos(gakx + \ggaky) +4 x i(cos(%akm - \ggaky) + cos(V/3ak,))
= 2cos(V3ak,) + 2(003(%(11@1 + \ggak )+ cos(g ak, \ggaky))
= 2cos(V3ak,) + 4cos(%akz) cos(\égaky) = f(k)

which means that the energy band of the graphene has a six-fold rotation symmetry, so we can try
to find the energy minima just in one sixth region of the first Brillouin Zone. namely in the triangle

spanned by I', K, K’ since we have in the triangle I, K, K’ region, %akx € (0,302 f) = (0,7) and

1207 /3,73
Lok, € (- ia%%, \égajgaé) (—%,%) so we have

Ok, f(k) = 4005(?&1@)(—2@ sin(gak‘m)) <0

i

and when k, = f we have

2 3 1,
3 5 ) =3 =3

so as ky, goes from 0 to ijlr 3 the function f(2T,k,) decrease from -2 to -3

(5=, k,) = 2cos(V3ak,) — 4cos(é§aky) = 4(cos(

when k, = 3° V3., we have

V3

1
f(ks, ?km) = 2cos(ak,) + 4005(2(11%) cos(gakm)

= QCOS(gt) + 4 cos(t) cos(%t) (t = gakw € (0,7))

= 2COS(gt) + 2(005(225) + COS(%t))

3 3 3
2 1
= 4(cos(§t) + 5)2 -3

which means that as k, goes from 0 to %— then (k,, ‘/gkz) goes from T point to K’ and f(k) decrease

from 6 to -3
collecting all the discussion above together the six-fold rotation symmetry, we can have the behavior

of f(k) in the whole BZ which is illustrated in Figure 5. since for the energy band we have

Ek’+ - Ek,, = 2t\/ 3 + f(k)

so we can clearly see the whole upper band and the lower band touch at f(k) = —3, which is just the K
and K’ point. so the bulk is gapped except for the K and K’ points which is called the Dirac points. if

we expand the f(k) near this two Dirac points, we have

B 2
f(K+k)= 2008(-% +V/3ak,) + 4 cos(m + gakz) cos(—g + \ggaky)
1 1
= 2(—5 cos(V3ak,) + ég sin(v/3ak,)) — 4005(3al<: )= cos(\ggaky) + \ég sin(égaky))
1 19 13 3
=—(1- 53a2k;j) + 3ak, — 4(1 — 2k2)(2( 31 a’kl) + wky)

922 922
:—3"‘10/ I{?z‘f'z(l ky

so the leader term in the energy spectrum near the Dirac Points are

9 9 3at -
EK-H;,i = —t/(—g) :l: \/3 — 3 + Z(Z2]€g + 1042]{35 = 3t/ :l: %U{Zl
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§3 HALDANE MODEL AND ITS PROPERTIES

ky\ 14 12 13 14
by
-3
!
r ! R
6 M k

Figure 5: the behavior of f(k) in Figure 6: the band structure of the Figure 7: the Dirac Cone near the
the Brillouin zone, the arrow means graphene,where we have chosen the pa- Dirac Points K and K’

monotonous decreasing direction of the rameter a=1t = 2.7 and t' = —0.2t

value.the behavior of f(k) in other re-

gions can be obtain from the triangle

T'KK' by the six-fold rotation symme-

try

we can see that the dispersion relation is linear on |I¥|,Which means that this is a cone, called the Dirac
Cone near the Dirac points K and K’. This linear relation means that the fermi velocity %—f remains
constant and does not rely on the energy. with all these knowledge in mind, we can draw the band

structure of the graphene (Figure 6).

.3 The Boundary Modes

as for the graphene, there are two kinds of boundary, one is called the Zigzag boundary and other

one is called armchair boundary, which is illustrated as in Figure 8

§3 Haldane model and its properties

R.1 General Configuration

another important model constructed from honeycomb lattice is the famous Haldane model. Haldane
use this model to argue that the critical point for the integer quantum hall effect is not the existence of
the magnetic field but the breaking of the time reversal symmetry of the whole system. The quantum hall
effect without external magnetic field is called the anomalous quantum hall effect.

the model and it’s flux configuration is illustrated in the Figure 9. in this model, in each Lattice site
A and B, he introduced the onsite energy of M and —M

Z Mecle; + Z(—M)c}cj
icA j€B
so that the inversion symmetry of the whole system is breaking. if M=0 the symmetry group is Cs, and

it M # 0, the symmetry group is Cs .
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§3 HALDANE MODEL AND ITS PROPERTIES

‘ Armchiar

Zigzag

Figure 8: two kinds of boundary for graphene system, one is called the Zigzag boundary and other one is called the

Armchair boundary

Figure 9: Left: the overall lattice tight binding model of the Haldane model, it’s the honeycomb lattice. Right: the

flux configuration in each regular hexagons

10 of 29
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§3 HALDANE MODEL AND ITS PROPERTIES

besides the onsite term, there is also a nearest coupling term just like the honeycomb lattice

Z tl(czcj + c}ci)
<i,j>
the most important part of this model is that to break time-reversal invariance, he also add a periodic lo-
cal magnetic-flux density B(r) in the z direction normal to the 2D plane, with the full symmetry of the
lattice, and with zero total flux through the unit cell.
since closed paths of first-neighbor hops enclose complete unit cells (and hence no net flux),the extra

phases we gain for the parameter ¢; from Peierls Substitution due to the periodic magnetic filed is

ie - - lze - - 1ze - 5 lie
— A-dl = A-dl = B-dS=—-—®a =0
R Jass 67 Jocen 67 Jou 6h

which means that the ¢; matrix elements for the nearest coupling are unaffected.
since the phase is path related, we can consider the extra phases we gain for the next nearest couplings

along the straight line which is indicated as arrow in Figure 9. so the extra phases for the ¢, hopping is

ie - e I 1 N 1] - o e 20, + D,
— A-dl=— A-dl+ — A-dl+ — A-dl=i-(2®, + ®p) = i2n——
b Jay s, hJa,=a, hJa,—n h Jpoa, h Q@
o 2D+ P
where ®g = % is the fundamental flux. so we have ty — toe" %o * if the next nearest hopping is along

the direction as the arrow shows in Figure 9.define ¢ = 27 , then t5 — t€' and the total flux in

20,4,
@9
the minor hexagons inside the unite cell is —6(®, + ®;) so as to maintain the net flux in the entire unite

cell to be zero.

with this in mind, we can see that for atoms A ,if the next nearest hopping in the a; direction, the
extra phase for the term c; ACitar.A 18 €9 since it annihilates a electron at i + a; and create an electron
at ¢ sites, which means the electron moves from ¢ + a; to ¢ along ay, which is just the same direction of
these arrows. and if the next nearest hopping is along the a, direction, the extra phase is e ', since the
electron moves just opposite the direction of these arrows, But as for atom B, if the next nearest hopping
is along the a; direction, the extra phase is e %, since the electron moves just opposite the direction
of these arrows. and if the next nearest hopping is along the a, direction, the extra phase is e?, since
electron moves just along the opposite direction of these arrows. with this in mind we can write down the
next nearest hopping term of this model (we use (m,n) to replace the site i since it’s two dimensional) and

write ag = as — aq,

Z t2(ei¢c.(rm,n)c(mvn)+a1 + e_i(ﬁc'(rm,n)c(m»n)‘f‘fh + ei(ﬁczrm,n)c(m»n)"ﬂw—al
(m,n)€A

—ig .t

+e Zm n)C(m.n)—ar T ewczm,n)c(m,m—aa + €77C ) Cman)—(az—a1))

Z (2 (eii(i)c}-mm)c(m»")"rm + ei¢cgm,n)c(m)n)+a2 t+e e Zm n)c(m n)+az—a1
(m,n)eB
+ el(b Im n)c(m n)—ay +e i Erm n)C(m n)—as + eid)c](Lm’n)C(m,n)f(az—al))

note that the above one has no H.c, since we think that this term is for one specific atoms connection to

the next nearest ones. similarly we can use the Fourier Transform to move on to the momentum space

_Z(kl k2 TA(B) m, ”CA( ) men.o

cumi = 7
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§3 HALDANE MODEL AND ITS PROPERTIES

1

- ei(klka)'TA(B),nz,ncA
NN,

CA(B),m,n,c = (B),k1,ks,0

k1,k2

the onsite term is just simply:

Z iMCJ(rM,n)C(mn Z =M Z Z N1 akl kgaki’kéeii(kl’k2).rm,nei(kll’kl2)¢m,n

(m,n) (m,n) (k1,k2) (K ,kb)

=+M Z Z ak1 foo AR K 5k17k 6k27

(k1,k2) (K ,k5)

=4+M E akl’kzakh;@
(k1,k2)

which means that the onsite terms is

T T
M E , Ay ko, AQky k2, A -M Qg ko, Bk ,k2,B
(kl,kz) (k17k2)

since t; is unaffected, so the nearest hopping term is the same as the graphene

> (al bjo + Hee)

<i,j>,0
]. . . . ’ ’ .
- Z N1 N. Z G’Lhkz,obki,ké,oe ikaka)ramn githaka) o0e 4 F ¢
14¥2 /o
<(m;n),(l,8)>,0 (k1,k2),(k1,k3)
1 3
i i o) i(k! kLY.
_ E E a; . Ubk’l,ké,ae_l(khkz).r&m(E e~ ik1,kz2) 6’)€Z(k1’k2) "Bls 4 H.e
N, N, 1,k2, _
(l,8),0 (k1,k2), (K] ,k5) =1
3
_ T i(k1,k2)-
= > AL ks oDk Ok kO iy O €7 %)+ H.c
(k1,k2), (k’l,k’),a i=1
—i(k1,k2)
§ § e~ i(k1.k2 ak1 ke, Ubkl’kz’g + H.c
(k1,k2),0 =1

finally, we consider the next nearest coupling term. at first, we consider a more general case

T —i(k1,k2)-(m,n) ,i(k],ky)-[(m,n)+(t,s)]
Za(myn)a(myn)ﬂm)f > Z 1N 0l 1, kg g ) mam) i B )

(m,n) (m,n) k1,k2 K} kL

_ iK1 ,kE)-(t,5) Z s o (k1 k) (mon) Hi(kY kD) (m.n)
E : E : NN k'l loy RS K
k1,ka K kG (m,n)

_2:}: Kt kD) (t,8) T

— ez( 1 2)( S)(Ikl,kﬂk;,kgékl,ki6’“27’“3
E1,ko K k)

_ E i(k1,k2)-(t,8) ,T

= e akhhakh;ﬁ
k1,k2

so finally, collecting all the terms, we have the whole hamiltonian in momentum space read as

_ T T
H=M E Ay ko, AQk1 k2, A — M E Qg ko, Bk ,k2,B
(k1,k2) (k1,k2)

3
—i(k1,k2)-8:\ 1
E (§ e )akl,kQ,Aakl,kmB + H.c

(k1,k2) =1

+ Z t2(6i¢6i(k17k2)'a1+e—i¢e’i(k1yk2)'a2 +ei¢ei(k17k‘2)'a3+h'c)a£1,k2,Aak‘1,k2,A
(k1,k2)
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§3 HALDANE MODEL AND ITS PROPERTIES

A

o1

Figure 10: the redefined vectors

+ Z tz(e—itbei(kh/w)'ul +ei¢ei(k‘1yk2)‘a2 +6—i¢ei(k17k‘2)'a3+h.c)a21)k278ak1,k2’3
(k1,k2)

if we write (ky,k2) as k and use the the basis 7, = (ax, 4, ax )", then we have

H = Z’YlHk’Yk-

k
and the diagonal part in the momentum space is
e — M + t2(6i¢6ik~a1 4 e itgik-az y pidgikeas | h.c) t 2?21 e—ik-6i
t] 2521 elk61 7M + t2(e—i¢eik'a1 + €i¢eik~a2 + e—i¢eik'a3 + h.c)

(8)

in order to make full the expression more symmetric, we can redefine the vetor so that a; + as + a3 =0

ay — —as
Ao — A7
as — —as

we can see this change in the Figure 10. after this new redefinition, the hamiltonian becomes(¢ — —¢
this because different paper use different sign convention for Peierls Substitution, this is a difference from

¢ — —¢ and in this notes I want to follow Haldane’s original paper)

H M + ty(e etk —az 4 eideihar 4 emidgik-—as 4 p c) t 2321 o ik
>t M ty(eiei 4 omibgikan | gitgitns 4} o
_ M + t2(Z?:1 eiteikai 4 h.c) t Z?Zl e—ik-8i
b Y e —M + (0 e e 4 he)
since

3 3
Z o k0 _ Zcos(k - 0;) —isin(k - 6;)
i=1

k=1

3 3 3
z eettai f hec=2 Z cos(¢p+k-a;) =2 Z cos(¢) cos(k - a;) — sin(¢) sin(k - a;)
i=1 i=1 i=1
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§3 HALDANE MODEL AND ITS PROPERTIES

k?J A
by
/ -3v3
K/
r *o
) >
\ % )
b1

Figure 11: the behavior of the function g(k)

3 3 3
Z e et L he=2 Z cos(¢p — k- a;) =2 Z cos(¢) cos(k - a;) + sin(¢) sin(k - a;)
i=1 i=1 i=1

so finally, we have that the block diagonal hamiltonian in momentum space is

3 3 3 3
Hy =2ty Z cos(¢) cos(k - a;)I + 14 Z cos(k-d;)o, +t1 Z sin(k - ;)0 + (M — 2ty Z sin(¢) sin(k - a;))o,
i=1

i=1 i=1 k=1

which is the same as the formula given in Haldane’s original paper|[1].

R.2 The band structure and phase diagram

next we need to consider the energy spectrum and the corresponding topological phases in this system.
since when M = 0 and ¢ = 0, this model is just the graphene model, so we can use the previous result
that
Z 2cos(k - a;) = f(k) = 2cos(V3ak,) + 4cos(gakrm) cos(\égak:y)

and

|Zcos(k’ 5P+ | Zsin(k )P =3+ f(k)
on the other hand, we know thaju l
4y = 8y — 63 = 3(3,\@) 4 =03 — 6 = %(—3,\/3) g = 01 — 6y = %(o,—m/é)
so we know that

23 sin(k-a;) = 2sin(%(3kw +V3k,)) + 2sin(g(—3kw +V3k,)) + QSm(g(—Néky))

= 4sin(\é§aky) cos(gakl.) — 2sin(V3ak,) = g(k)

fallowing the same discussion about the function f(k), we can find that from I' to K, g(k) increasingly
from 0 to 3v/3, from K to K’, it then deceasing from 3v/3 to —3+/3, and for fixed k,, it decrease as k,

increase, which are illustrated in Figure 11. then the spectrum is just

By i = tycos(6) f(k) £ \/BB+ f(K) + (M — tasin(d)g(k))?
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§3 HALDANE MODEL AND ITS PROPERTIES

then we examine some special points, we can find that at the K and K’ points, we have (since in Haldane’
s original paper, he labelled 01,05 in such a way that z - (0; X d3) is positive, so we should replace

01 = 02,02 — d1 from the notation in the section Honeycomb lattice in previous one.)

o \f 1. a 27
Kby= 205 -5) 5L -v8) = 7
2ot V3 1. a
Kb= 5T —3) 5Lv3) =0
or V3 1 2T
K- b5 = %(?a—g)‘a(—lao) =3
, oo 2m f 1 B

K’-62:2—W(£ 1).5(17\/;7,):7

/333
2 /3 1 2m
K8y = 2L (X2 2y g(=1,0) = — =X
53 \/§(373) a( 70) 3

since the band close only when the coefficient of Pauli metrics are all vanishing, From the properties of
Graphene, we know that this can only happens at the Dirac Points.In these points ), cos(K - §;) = 0 and
> sin(K - 6;) = 0 and

2 .27 3
Zsm (K -a;) = sm( ) + sm(——) + sin(—- 3 )= 38111(?) = 5\/§

S sin(K' - ai) = sin() 4 sin(~ ) + sin(~ ) = ~3sin(2) = V3

3 3

so in order to make the coefficient of o, to vanish, the value for M should be

K : M = 3V/3tysin(¢)
K': M = —3/3t,sin(¢)

in order to make sure that the energy spectrum never overlap unless they are touched, we can further

require that
E ax < Emll’l

this can be done by choosing small enough ¢, since when t; = 0, this upper band is always larger than
zero and the lower band is always smaller than zero(the spectrum is a continuous function of ¢5).

when M = 0 and ¢3sin¢ = 0, then at K and K’ points, the band gap close at the same time, so this
Eigen value of this system has the symmetry of Cj ,(Inversion interchange the K and K’ points). But if
one of M = 0 and t,sin ¢ = 0 is violated, the condition M = 3v/3tysin(¢), M = —3+/3t,sin(¢) can not
be satisfied at the same time, so either the tree K points or the three K’ points are closing at the same
time, and the symmetry group of this system is reduced to C5 group. And the topological phases of this
system is illustrated in Figure 12.

in order to see the low energy level properties of this system, we can expand the hamiltonian near

the K and K’ points.near the K Points, we have

3
2 1 1
ZCOS((K +k)-9;) = Cos(—7r + —ak, — éaky) + cos(0 + iakz + \gg

27
2 3 T3 5 ak,) + cos(—? — ak,)
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§3 HALDANE MODEL AND ITS PROPERTIES

v=0

v=+1

®
Figure 12: Phase diagram of Haldane Model
1 1 1

=—— cos(iak:x - \ggaky) - \ég sin(iakx - \ggakzy) + cos(iakglc + ?akzy)

1
~3 cos(ak,) — \gg sin(ak,)

. 1 V31 V3 1 V3
(linear term) ~ 5 7(fakx - Taky) +1-— 3 7@/@

3a \/§ 1

=gtk
similarly, we have
3
2 1 1 2
Zsin((K +k)-0;) = sin(—7T + —ak, — éak‘y) + sin(0 + —ak, + éaky) + sin(——7r — aky,)
P 3 2 2 2 2 3

V3 1 V3 11 V3 1 V3

= 7 Cos(iakz — TClky> — 5 Sln(ga]% — TCka) + Sln(§ak‘w + TClky)
3 1
— \2[ cos(ak;) + 3 sin(ak,)
1.1 1 1
(linear term) ~ \ég - §(§akw - \égak:y) + (§akw + \ggakzy) - \ég + 5&]{:9:

3a .1 ﬁ
= —(zks + —k

2 (2 =t 2 )

if we define

we can find that

Q0 —ik-0; __ *
h(R()k) = _e ™% = h(k)
i=1
and the coefficients of o, 0, is just

3 3
> cos(k - 6;) = Re{h(k)} Y sin(k-6;) = Im{h(k)}
i=1 i=1

so using these result we can derive that near —K:

3a \/g 1
=20k )

;COS((*K +k)-6;) 5 5
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§3 HALDANE MODEL AND ITS PROPERTIES

&

1
me —K+k)-6) = %(513”7@)

similarly, near the K’ points, we have

3
1 3 2 1 3 2
Z cos((K' + k) - 6;) = cos(0 + —ak, — iak‘y) + cos(—7T + —ak, + £akzy) + cos(—j — aky)
— 2 2 - 3 2 2 3
1 V3 11 V3 V3 1 V3
= COS(iakx — 7(1](31/) — 5 COS(iakx + TQky) — 7 Sln(iakw + 7aky)
1
~3 cos(ak,) — 5 sin(ak,)
1 1 1
(linear term) ~ 1 — — — ﬁ(fakac + ﬁ ky) — = ﬁakx
2 2 °2 2 2 2
3a \/§ 1
=g
3
1 2 1 2
Zsin((K’ +k)-6;) =sin(0 + iakm — \ggaky) + sin(?ﬂ. + §ak:z + \ggaky) + sin(f?7r — aky)

=1

1 V3 V3 1 V3 1.1 V3
= 51n(§akm - Tka) +5 cos(§ak‘m + 7(1/@) —5 Sln(iak‘z + Yaky)
1
- \23 cos(ak,) + 5 sin(ak,)
. V3 V3 1.1 V3 V3 o1
(linear term) ~ ( ak, 5 —ak,) + 5 §(§akw + 7ak;y) -5+ §a]<;$
3a 1 \@

= ok, — Lok
5 (Gke = 5H)

so if we define (z,y)k[k] = (320, cos((K + k) -d;), 3, sin((K + k) - &;)) and similarly for (z,y)x[k], we
can find that

D

(ki k)" = aR( )(Fy, k)T = (2, 9) k[~ R.( )] = Sak

(@ )k lk] = SaRt(-Z

ol

()10 ] = 20RO ke k)T = (@)1 [Re(~ )] = Sa

we can see clearly see that the Energy spectrum of graphene has (s symmetry , but the symmetry group
for the hamiltonian of graphene is C; due to the fact that the nearest coupling term (", e=*") only take
C5 symmetry.

with the above expansion in mind, we can write the effective hamiltonian in this system near the K
and K’ points as

Sgtl(kgﬁam + kyoy)

on the other hand, since the leading term of 2" sin((K + k) - a;) =2, (sin(K - a;) cos(k - a;) + cos(K -
a;)sin(k-a;)) =2, sin(K - a;) = g(K), so we can write down the whole expansion of the Haldane model
near the Dirac point:

%)(sz, k) (04, 0,) + (M — 3v/3t, sin(¢))o

K': H = —6t5 cos(é) + gathz(%)(kzw, k)T - (00, 3y) + (M + 3v/3ts sin(6)) o

K : H= —6tycos(¢p)I + gathz(f
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§4 QUANTUM SPIN HALL EFFECT IN GRAPHENE

after ignoring the constant term and by redefining the k vectors, we can write down the following effective

hamiltonian:
3
H = §Gt1 (koz,lv ka,?) . (va O'y) —I— (M — a3\/§t2 Sin(¢))02
where a = + is for K points and o = — is for K’ points.

§4 Quantum Spin Hall Effect in Graphene

R.1 The Bulk Properties

another important model constructed in the honeycomb lattice is the so called model for the quantum
spin hall effect, which can be regarded as the extended Haldane model which include the spin degree of
freedom in each sites.in this model, we will consider the whole hamiltonian and the low energy effective
hamiltonian.

the first term in this model is the onsite energy term, which read as
H, = Z )\l,cjci + Z —)\l,cjci
icA icB

when we transfer to the momentum space, this term is just

i i
> Achacka = D Al plrn
k k

when we consider the low energy effective hamiltonian, we should project this one to the points near
the K and K’ points, if we use the basis ¥ = (cK,A,cK7B,cK/7A,cK/,B)T,then we can write the effective

hamiltonian as W' Hj., ¥ then the above term contribute to Hy,, the following metrics:

0
—1

0

H, =\ =I®o,

o o©O O
S = O O

—1

where the previous one in the tensor product act on the (K, K’) block and the second factor o, act on
the (A, B) sublattice. the second term in this model is the same nearest coupling term:
H, =t Z cg,ocj,g
<t,j>,0

using the results in previous section, we know this term in momentum space is just

3 3
Hip = tz cos(k - 6;)o, + tZsin(k - 0;)o,

i=1 k=1

near the K and K’ points, we know that

3a s
Ht,K = ?tRZ(_E)(_kzakZJT ’ (U£7Uy)

3a

57
Hi k= ?tRZ(F)(km,ky)T (042,0y)

since we know that

—5)(hesky)T = Ru(—

R.( 6

) = 0l ) = 0L B () (ke by)

(o))
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§4 QUANTUM SPIN HALL EFFECT IN GRAPHENE

Figure 13: the sign convention for v; ; for the term Hg, in the QSH model

since the system has a C symmetry and R, (3F)(ky, ky)" = R.(3F)R.(%)(ka, ky)", we can make the incre-

ment on (ky, k) near K along the direction R (%)(ks, k,)” and near K’ along the direction R, (3F)(ks, ky)”,

then this term contribute to the low energy effective hamiltonian metrics as

3 —kpoy + K 0 3
H, — 2% Tz + Kyoy =Y (- ®o,+®0,)
2 0 kyop + kyo, 2

where the Pauli metrics 7; act on the (K, K') block. if we redefine the k, — —k,, then this term is just

3a

3a
?t(—’rz ®Ur +I®0y) — ?t(’rz ®Ur —|—I®0'y) = UF(TZ ®Jz +I®0y)

and the third term is not the original one in Haldane’s papers, it has the following form instead:
H,, = Z i)\soviyjcgszcj
<<ij>>

where v; ; = %(d} X dAg)z = 41 and dy, d is are vectors along the two bonds the electron traverse going
from site j to i. and the sign of these values is depicted in the Figure 13 with these illustration, we can

write down the term for Hy, explicitly as:
—_— T z T z 'i' z
HSO - Z>\50 Z (C(m,n)s C(m,n)+a: + c(m,n)s C(m,n)+az + c(m,n)s C(m,n)+as
(m,n)eB
- cgmm)szc(mfﬂ)*al - sz,n) Szc(mf”)*‘w - CJ(rm,n) Szc(m’”)*‘ZS)

+ i)\so Z (_C'gm,n) SZC(mm)Jral - cIm,n)SZC(m1")+a2 - c'(fm,n) Szc(m»n)+a3
(m,n)€A

+ CEme)szc(m,n)_a1 + CIWLJL)(SZC(,,L,L)_(I2 + czmm)szqm_yn)_%)
so when making Fourier Transform to this term, we have

Hso — i>\so § CJ]rg Bszck’B(ezk»al 4 ezk-ag 4 ezk~a3 o 6zk~—a1 o 611@‘—@2 o 6zk‘—a3)
k
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§4 QUANTUM SPIN HALL EFFECT IN GRAPHENE

+ i)\so E CL Aszck’A(_elkAal _ eikag _ ezk-ag + ezk-—al + ezk-—ag _ 6zk-—a3)
k

define g(k) = —i(eiF@ 4 ehoz 4 gikas _ gik—ar _ gik—as _ pik—asy — 959 gin(k . q;) then

Hyo = Ao —g(k)cz’BszckyB + g(k)c};’AszchA
k
since from Haldane’s model we know that g(K) = 3v/3 and g(K') = —3+/3, so this term contribute to the

low energy effective hamiltonian with the following term:

0

—0,8%

Hso — 3\/5/\30 ( UZOS ) = 3\/5/\307} ® g, X Sz

the last term in this model is the nearest neighbor Rashba term

Hpr =i\g Z cl(s x dij).c;

<iyj>
where d;; is the nearest bond from i to j. we can write done this term more concrete as

Hgr =i)\g Z (CZm,n),A(S X _Sl)zc(m,n)ftsl,B + C](Lm’n)’A(s X _82)zc(m,n)752,3 + Czrmyn)’A<S X _53)zc(m,n)753,B)

(m,n)

+ Z)\R Z (sz,n),B(S X Sl)zc(m,n)+51,A + CIm,n),B(S X 82)zc(m,n)+52,A + C'(rmyn%B(S X 53)zc(m,n)+53,A)

(m;n)

if we make Fourier transform to this term, it read as
Hp =i\g Z(c;Aeﬂ'k"sl(—s X 01).Cr.B + cLAe*““";Q(—s X 02).CkB + cLyAefik'&*(—s X 03):Ck.B)

k
+ iR Z(c;Beik"sl (s x Sl)zck,A + cZ,Beik"sQ(s X 32)ch,A + C,LBeik"i"(s X 53)ZC]€’A)
k

since we have (s x 81), = —¥2s% — 1s¥ (s x &), = Y3s” — Ls¥ and (s x 83). = s¥, so we have
3 3 _, 1 . 1 _. .
HR _ i/\Rg(C;A{Sz(gezkﬁl _ \é»ezk-%) + Sy(ie*zk-(sl + iefzk-ég _ e*lk-&s)}ck)B

3 3. 1. 1, .
+ i/\REk:<CI];’B{Sa:<_\é>ezk-51 + ?ezb&) + Sy(_iezk-él _ Eezk-éz 4 ezk»&s)}ck’A

since we know that

\/ge—umsl _ \/ge—ik.(sQ _ \/ge—zgakm+z‘§aky _ \/ge—z%akm—iéaky

2 2 2 2
3 1
=1 3sin(\2[ak‘y)e_12ak”
3 1 3 1
= \/?;sin(\gaky) sin(gakzx) + i\/gsin(\gak:y) cos(§ak’w)

c=(—1)z}

7677,1061 + 767116'62 _ efzkﬁg — iefz%akaHTaky + 7671%11]@17170,]% _ emkI
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§4 QUANTUM SPIN HALL EFFECT IN GRAPHENE

3 1 ;
= Cos(—2 ak,)e 2k _ giaks

= (Cos(\ggaky) COS(%(L,ICI) — cos(aky)) — i(cos(\ggaky) sin(%akz) + sin(ak,))
c=(—1)z]
then the nearest neighbor Rashba term can be written as
Hr =MAr Z(CL,A{szz,f + sz e B

k
Ar > (ch g {72 + 820" Yena
k

in order to write down the low energy effective hamiltonian, we need to calculate some values at K and

K’ points, we have

\ggeiK.él _ \fem.éz _ \ggeﬁ‘; _ \ggeio _ _% 3_ %z S R ge,i%
%e‘iK"sl + %e‘iK'éz — e — %e‘i%’r + % — % = —Z\/gz + % =—iz¥ = 2Y = ige_i% = iz%
\fem"‘” - \fe“{"‘% = 73@*1'0 - ‘fe = i%ﬂ %7; = —izf — 25 = —geﬂ% = 2%
%efiK,-§1+%efiK/~52_efiK,%Sg _ %e*m—i—%e*i%ﬂ—ei%ﬂ _ _%\/5”2 — izl sl — Zée,i% )

so in the low energy effective hamiltonian, this term contribution with the following metrics

0 258" 4 25 sY 0 0
A L A L 0 0 0
HR - )\R L Y
0 0 0 258" + zpei8Y
0 0 23/ 8% + 23 sV 0
0 258" +izgsY 0 0
Tk w2 Tk Ly

A z 8T —izg s 0 0 0

0 0 0 —25 8" +izg sy
T x g Tk Ly

0 0 2y 8T — 1z s 0

= Ar(7:(Re[zk]ow — Im[2i]oy)s” + (—Imzf]o, — Re[zk]oy)s")

this is not consistent with the original paper of C.L.Kane and I don’t know why. Finally, we have the full

hamiltonian inn real space:

H=H,+H;+ Hy+ Hp
= Z /\Vc;rci + Z —/\chci +t Z claQ’t7 + Z i)\soviyjc;rszcj + AR Z c;r(s X Jij)zcj

i€A i€B <i,j>,0 <<i,j>> <i,j>

and in the Fourier space read as

_ § : T E : T
Hk = )‘Vck-,,Ack,A — /\Z,C]“BC]C’B
k k

3 3
+ t(z G_ik'&)CLACk,B + t(Z eik"si)c;,Ack,A

i=1 i=1
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+ )\so _g(k)CL,BSzCk,B + g(k)c};’ASch,A
+)‘RZCL,A{S +syzk}ck3+)\Rch3{sx V4 sV 2l Yok a
k p

or write in the basis (¢ 4, cx 5) as metrics:

3 3
Hy=M\o,+t Zcos(k 20;)0. + tz sin(k - 6;)oy + Asog(k)o.5*

=1 k=1

+ Ar(Relzf]o, — Im[27]oy)s” + Ar(Re[z}]o, — Im[z}]o,)s” 9)
and the lower energy effective hamiltonian can be written as
H=1®o0,+vp(r, 0, +I®0y)+3\/§)\sorz®az®sz

+ Ar(7:(Relzk|ow — Im[zi]oy)s” + (—Im[zi o, — Rezk]oy)sY)
=I®0, +vp(1. @0, + I @0,) +3V3\oT: ® 0, @ 5

3
+ PAn(: @ (00 +V30,) @ 5" + (V30 —0) © )
if we define the time reversal operator as T' = I ® (is¥)K, then T~! = [ ® (—is¥)K, when we consider a

specific points in the Brillouin Zone, the 4X4 metrics can be expand by the sixteen Dirac Metrics o; ® s/,

we example the behavior of these metrics under Time Reversal

TIQIT ' =1 (is')K)I®I(I® (—is!)K) =1 ® (s'Is¥) = I ® 1 even
TI®s"T ' =(I®(isV)K)I @ s (I @ (—isV)K) = I @ (s¥s"sY) = -1 ® s* odd
TI®s'T ' =1 ®(isY)K)@s'(I®(-is!)K) =1 ® (—sVsYs’) = —1 @ s¥ odd
TI®s*T = (I® (isY)K) @ s*(I @ (—is¥)K) = I ® (s¥57sY) = —1 ® 57 odd
To, @IT = (I ® (isV)K)o, @ [(I ® (—isV)K) = 0, ® (sV1sY) = 0, ® I even

To, @s"T ' =(I® (is!)K)o, ® s°(I ® (—is¥)K) = 0, ® (sYs"sY) = —0, ® s* odd
To, @s'T ' = (I® (is¥)K)o, ® sY(I ® (—isV)K) = 0, ® (—sYs¥s¥) = —0, ® s¥ odd
To,®s*T ' = ®(isY)K)o, @ s*(I @ (—is?)K) = 0, @ (sY57sY) = —0, ® s odd
To,@IT ' =(I® (is)K)o, @ [(I ® (—isY)K) = —0, ® (sV1sY) = —0, ® I odd
To,®sT ' =(I® (is¥)K)o, ® s"(I @ (—is¥)K) = —0, ® (sVs"s¥) = 0, @ s* even
To,®@s'T ' = (I ®(isY)K)o, @ s¥(I @ (—is)K) = —0, @ (—sYsVs¥) = 0, ® s¥ even
To,®sT ' =(I®(is")K)o, @ s*(I ® (—is!)K) = —0, ® (sVs*sY) = 0, ® s even
To,IT ' =(I® (is")K)o, @ [(I ® (—is¥)K) = 0, ® (sIs¥) = 0, ® I even
To,®s" T = ®(is¥)K)o, @ s (I @ (—is!)K) = 0, ® (sYs"sY) = —0, ® s" odd
To,@s'T ' =(I®(is")K)o, @ sY(I @ (—is¥)K) = 0. ®@ (—5YsYsY) = —0, ® s¥ odd
To,®sT ' =I®(is¥)K)o. @ s*(I @ (—is¥)K) = 0, ® (sVs7sY) = —0, ® s* odd

so besides the I ® I there are only five are even under time reversal T

MN=0,xI1
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MP=0,®I
I =0,®s"
IM=o0,®s¥
I°=0,®s"

[re.r’)

since others are odd, which can be written as I'*? := .namely

21
M?=-g,0l THW=0,0s TMM=0,0s I'"=0 s
*=—¢,®s" I*=-0,0s TI’=-0,0s
MPBi=Tes IP=_Jgs

M =1®s"

then the equation (9) can be written in these basis as

Hy, = )\T2 4 ( ZCOS (k- 6;))It + Zsm (k- 6:))(=T"?) + Aog(k)DH5

=1

+ AgRe[2](—=T23) — AgIm[2{]T® + AgRe[2}](—=T**) — AgIm[z}|T*
where we have define ,
k)y=2 Z sin(k - a;)
i=1

and

3
Zeilk O%i(—sx ;). = —i(2§s" + 2)'sY)

=1
R.2 The boundary Modes

in oder to work out the boundary modes, we should take periodic boundary condition in one dimension
and open boundary condition in other dimension, which means that we can only make Fourier transform
in one dimension of the lattice sites.Suppose that we choose periodic boundary condition along the as

direction, in this case we can write down that:

in this case the onsite term in the model becomes:

Z CLLnCm, Z Z 6—zk T'm,n o —ik ncT kcm &

(m,n) (m, n) k k!
=YD e emp S
m kK’

=22 CniCm
k. m
considering there are two kinds of atoms in each unite cell, we have the onsite term in k block read as

t t
Ay E Con ke ACmk, A = Av ) Cp i BCmk,B
m m
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§4 QUANTUM SPIN HALL EFFECT IN GRAPHENE

with the same reason, the nearest coupling term becomes

T _ —zk:r - 1A |
ty > Clm,n),AC(m’ '), B = 1 ~ mrett il e b ACm kB

<(m,n),(m’,n')> <(m,n), (m’ n’)> kK’
—ik-Tm,n ik’ ’r’mn ik’ 04,2 T
=1 E E e e E e ek AC(m+0,1) k', B)
kk/
ik’ 8; 2 T
-f1§53§535kk'253 2eh, s w)
m  k,k’

=ty > (D el pemis i)
k. m %

the k block is just

k-8i2 .f
DI e s k) + B
m 7
_t 7Zk532T + zk612T + Z]<3622T )
=1l k,ACm,B,k T € k,ACm—1,B,k T € Cm,k,ACm,B,k

zk6 T ik-§ T ik-§ T
+t E e Crn ke, BCm+1,Ak T € > Con ki, BCm, Ak T € 2 kacmAk>

then we consider the next nearest SO term, as for this term, at first we consider the general term

with the following form:

E E E 7ik:-r ik'-r s T
C (m,n) C(m,n)+(r,s) (mm-2e () ”)VQCm,kcm'H'ak’

(m,n) (m,n) k, k:’
*ik-r(m,n),zeik/'r(m,n),zelk -sas T L Comr k!
E : E : Cm,
(m,n) k,k’
= g g O, e os02 CT KCmtr k!
m  k,k’

ik-sa T
- § :E :6 : mkchﬂ"k

and the corresponding diagonal k block is

ik-sas T
E € 2cm,kcm+7‘7k
m

so if we let a; and as be the primitive lattice vectors of graphene as Figure 14 shows, we can write down

the term of Hg, as:

_ T z ik-0 T z ik-a T z ik-a
Heo = ideo Y (ch o as"Cmiipae™® =l o as7cmpae™ 2 ¢l ys7cn g ae™

m

T z ik-0 T z ik-—a T z ik-—a
= CopAS Cn—1k,A€T T+ Cl g A8 Cm A€ T — ey a8 e kA€ )

ik-as T z ik-as

. T z ik-0 T z
Fidso ) (=i 55 Cma1 kB + G g a8 kB = G g ST Cm 1k BE

m

T z ik-0 T z ik-—a + z ik-—a
+ Coie.BS Cm—1,k,B€ " — Cp . gS Cm k,BC * 4 Cpy k. BS Cm+1,k,BE ?)

if m £+ 1 exceed the region of the lattice number in a; direction, that term should vanish in the above

equation. this is the way we choose open boundary condition to calculate the boundary modes.
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§4 QUANTUM SPIN HALL EFFECT IN GRAPHENE

Figure 14: the open boundary of graphene

at last, we will consider the nearest neighbor Rashba term

HR = Z/\R Z cj(s X CZZ'j)ij

<ij>

in our notation of Fourier Transform along the ay direction, this can be written as

Hp =i)\g Z Z(cjn,k,Ae_ik"S“(—s X 53)Zcm’k13 + cImk’Ae_ik“sm(—s X 51)sz71,k,B + cImk’Ae_ik“s"“Q(—s X 52)sz,k,B)

k m
+iAR Z Z(Cjn,k,Beik'él(s X 51)z0m+1,k,A + CIn,k,Beik'éz(S 28 52)zcm,k~4 + Cin,k,Beik'ég(S X SB)ZCm,k,A)
k

sililarly, if m 4+ 1 exceed the region of the lattice number in a; direction, which means that term should

vanish in the above equation. so if we use the basis

— T
Ve = ( “y Cm—1,k,As Cm—1,k,B> Cm,k, A Cm k,Bs Cm+1,k,As Cm+1,k,By " " * )

then the hamiltonian in the k diagonal block should be 'y,iH Ve and My is a ANX4N metrics with N the
number of unite cells along a; direction.

the onsite staggered potential terms will contribute to Hy a term with the following metrics
Hu,k = )\VIN ® 0o,

and the nearest hopping term will contribute to Hj; a term with the following metrics multiply a

general parameter ¢;:

s 0 6—ik~52,2 + e—ik~63,2 ; 0 0 s 0 e—ik61,2
N® gikisas | il 0 FIny1® Gk 0 +iy,1® 0 0

and the next nearest SO hopping term contribute to Hy a term with the following metrics multiply

a general parameter Ay,

_eik}ag + e*ikag O
iy ® ) ) ® s*
0 e’LkGQ _ efzkag

) 1 — e ka2 0 z
+iln1 ® . ® s
0 o
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ethaz 1 0
+ily 1 ® 0 eitar 41 X s

Finally the nearest neighbor Rashba term will contribute to Hy a term with the following metrics

multiply a general parameterAg:

I ® 0 e" 2 (g x 03), + e 22 (—5 x §,),
i , A
N eh93:2 (s x 83), + e022(s5 X 0y), 0
0 0 0 e Ho2(—5x4d),
+ily1 ® ) +ily_1®
A < eh 12 (5 % 8,), > M < 0 0
) 0 _ef’ik}(;g’z ) O _67ik62'2
=iy e ( eikd3,2 0 ) (S . 53)z iy ® ( eikd2,2 0 (S 8 52)2
0 0 0 —e 012
+7:IN,1®< kS )(SX&l)Z-l—Z.IN’l@( 0 0 )(8)(51)2
e 1,2

since we know 01 = 1(2a1 —az) = %(1, —/3),0, = 3(202—ay) = 4(1, V3),05 = —3(a1+az) = 4(—2,0)

and |a;| = |aa| = v/3a,50 we have (we set a = % so that |a1| = |az| = 1 in the following context)

eih012 _ ik(=%lazl) _ e—ik%a — oikg
pikdan _ pik(Flaz)) — ik2fPa _ ik}
oih0s2 _ ik(=%laz]) _ e—ikéa — ik
eikaz _ ikV3a _ ik
and the values for (s x ¢;),

- V3,1
§X01),=——78"—-5Y
A

: V3,1
§X 02), = —8"——s¥
(5 X 0). = = 5

(5% 83). = ¥

so finally the nearest neighbor Rashba term can be written as

0 _ —ikégyz O _ —ik?(;gj_) 3 1
_’iIN®< ¢ >3y+iIN®< ¢ (st— Sy)

eikds,2 0 ekd2,2 0 2
+iln1 ® ( ekoé g ) (—‘fsw _ %sy) +ily_1 ® < —e—;k-al,z ) (_\f e _ %sy)
— {‘fim ® ( eik(;“ 6;“272 ) - \film ® ( eikgm 8 )
N EZINH ® < 0 et )}sm
0 0
+ {ily ® ( ek(‘)s _e;kdg’z > —Sily® ( e,f; _egkéw )
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1 0 0 1 0 —e kb2
— =il — Ziln y
2Z N1® < Gl 0 ) 22 N-1® ( 0 0 )}8

in the end of the story, after collecting all the terms, the hamiltonian in diagonal k block with open

boundary conditions in the a; direction consisting of the following terms
H=H,+H+H,+ Hp
wher H, is the following metrics multiply a global parameter multiplier A,
Iy®o,

wher H,; is the following metrics multiply a global parameter multiplier ¢,

I 0 6_ik.52’2 +e—1ﬁk~63,2 I 0 0 I 0 e—ik61,2
N® gikisas | il 0 FiN1® G2 0 iy, 1® 0 0

wher Hy, is the following metrics multiply a global parameter multiplier Ay,

_eikag + e*ikag 0
iy ® ) ) ® s*
0 ezka2 _ e—lk‘az

) 1 — e ka2 0 ;
+iln: ® , ® s
0 —1 4 etk
etkaz _ 1 0
+ Z'IN,fl ® . ® s*
0 —ethaz 4

wher Hp is the following metrics multiply a global parameter multiplier Ag

3 0 ik 3 0 0
{\2[1'[1\[ ® ( ) - \Q[UN,l ® ( )

k2.2 0 k12 0
— \gg’i[]v,1 ® ( 8 _e;kﬂm >}SI
+ {ily ® ( eﬁgw _e;k53'2 ) - %UN ® ( ei:sQ,z _e;km )
— %UNJ ® ( e’ik(~)61,2 8 ) - %iIN,fl ® < 8 _6_:;-51)2 >}8y

§5 Kagome Lattice

another important lattice model constructed from the honeycomb lattice is the so called kagome
lattice, which holds flat band, Dirac cone and Van Hove singularity, in this section, we will demonstrate
these features.

the lattice configuration can be seen in Figure 15. it’s quite similar to graphene but in each unite

cell, there are three sites. Considering the nearest coupling, the hamiltonian in the kagome lattice can be

H= Z ti’jCICj

<i,j>

written as
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Armchiar

Zigzag

Figure 15: Left: the graphene lattice, which can be seen as translation of the regular hexagon along the reflection
symmetry line passing the midpoint of each edge, in this kind of translation, the regular hexagon can fill up the whole
plane thus the lattice sites in each unite cell is two, labeled aa A and B in literature. Right: the kagome lattice, it
can be seen as translation of the regular hexagon along the reflection symmetry line passing the vertexes of the hexagon,
in this kind of translation, the regular hexagon can not fill up the whole plane, there are regular triangles in the unfilled
parts, so the unite cell must be larger than that in the graphene or equivalently, there are three sites in each unite cell

which is larger than that in graphene.

in the following, we consider the fully symmetric case, that is ¢; ; = ¢ for all the bonds, we can write down

the Fourier transform of lattice model to the momentum space which is, in the spinor v, = (cx.1, c.2, cx.3)7,

it read as
0 1 1
Hk)=1]1 0 1
1 1 0
0 0
tetull 0 0 +ete
0 0
0
+e o 0 0] +ete
1
0 0 0 0 0 0
femlera g g 1| petleta) o0 0
0 0 0 0 1 0
0 1+ etha 1+ eikaz
=1+ e~ tk-ar 0 1+ e*ik~(a1+a2)
1 +eik~a2 1 +eik'(a1+a2) 0

then we can derive the band of this hamiltonian

|H(k) — EI| = —E(E? — (1 + e'*(@Fa2))(1 4 g=th-(artaz)y)
_ (1 + efik-al)(_E(l + eik~a1) _ (1 + efik-az)(l + eik-(a1+a2)))
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+ (L) (14 e m) (L4 e nrn)) 4 B(1 4 7))
=—E*+E(2+2cos(k- (a1 +az)) +2+2cos(k-a;) + 2+ 2cos(k - az))
+{(1 + e*e2)(1 + eFa)(1 4 e~Flmta)y L ¢l

= —F3+ E(2+2cos(k- (a1 +as)) +2+2cos(k-ay) +2+2cos(k - az))
{1 4 ethar pethaz g gik(aatan) 4 o=ik-(artaz) 4 g=ikar 4 o=thaz 4 7 4 o0}
= —FE*+ E(2+2cos(k - (a1 +as)) + 2+ 2cos(k - a;) + 2 + 2 cos(k - as))
+4(1 + cos(k - (a1 + az)) + cos(k - a1) + cos(k - as))

=0

we can find that the solution to the above equation is

which is independent of k.
and then dividing the above equation with (F + 2) we have

— E* +2FE + (24 2cos(k - (a1 +ag)) +2+2cos(k-ay) +2+2cos(k-az)) —4=0
— (E—1)>=3+2cos(k- (a1 + as)) + 2cos(k - ar) + 2 cos(k - az)

thus we have

Ei(k) =1+ +/3+2cos(k- (a1 +az)) +2cos(k - ar) + 2cos(k - as)

since the unite cell is the sam as that of graphene except the volume, so we can directly use the results

from graphene and find that

2cos(k - (a1 4 ag)) + 2cos(k - ar) + 2 cos(k - ag) = f(k) = 2cos(vV3ak,) + 4cos(gak:z) Cos(\ggak:y)
in conclusion, we have the band structure of the kagome lattice
E (k)= -2t
Ey(k) = t(1£ 3+ f(k))
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