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§1 GENERAL HONEYCOMB LATTICE AND ITS PROPERTIES

Figure 1: the structure of the honeycomb lattice and the
corresponding unite vectors(basis) in the real space, there
are two kinds of choice for the unite cell.

Figure 2: the basis for the unite cell in real space and
the corresponding reciprocal space

§1 General Honeycomb Lattice and Its Properties

ℜ.1 Basic Lattice Structure

Honeycomb lattice is a very important system, many important models are constructed from it, so
in this part, we make some efforts to think about this model in more details. as the Figure 1 shows.

this lattice consists of regular hexagon, these regular hexagons fill the whole two dimensional real
space.

there are two kinds of choice for the unite cell, suppose the side length of the regular hexagon is a,
this is also the distance for the nearest carbon atoms. then one choice of the unite cell consists of the
following two basis
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another kind choice of the unite vectors in the real space is

a⃗1 = 2× a cos π
6
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these two unite vectors are related to each other by a rotation of π
3

along the z direction. and the
corresponding basis in the reciprocal space is
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§1 GENERAL HONEYCOMB LATTICE AND ITS PROPERTIES

since these two kinds of choice are related to each other by a rotation(rotate the whole system π
3

along
the z axes), and we often use the latter one.

in order to make the whole system looks more symmetric, we can rotate the whole system along the
z axes π

6
counterclockwise, then the corresponding lattice vectors are
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the reciprocal lattice vectors are

b⃗1 → Rz(−
π

6
)⃗b1 =

2π√
3a

(

√
3

3
x̂− ŷ) (3)
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we can see these basis vectors transform to a more symmetric way as in the Figure 2. then using these
lattice vectors in the reciprocal space, we can plot the first BZ and indicate some important symmetric
points of the honeycomb system.

ℜ.2 Honeycomb lattice derivation from FCC lattice

for fcc lattice, the eight vortex coordinates are (in the basis ex = (1, 0, 0)T ,ey = (0, 1, 0)T ,ez =

(0, 0, 1)T )

V1 = (0, 0, 0)T V8 = (1, 1, 1)T

V2 = (1, 0, 0)T V3 = (0, 1, 0)T V4 = (0, 0, 1)T

V5 = (1, 1, 0)T V6 = (1, 0, 1)T V7 = (0, 1, 1)T

and coordinates for the six face center are:
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if we look from the [1,1,1] direction, where should these sites locate? in order to figure out this, we should
at first put V1V8 direction as the new e⃗ ′

z direction and use it to create new basis e⃗ ′
x and e⃗ ′

y . then check
the coordinates for these points in this new basis. so we establish that
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2 of 29



§1 GENERAL HONEYCOMB LATTICE AND ITS PROPERTIES

or equivalently
(e⃗ ′

x , e⃗
′
y , e⃗

′
z ) = (ex, ey, ez)U

where

U =


1√
6

−1√
2

1√
3

1√
6

1√
2

1√
3

−2√
6

0 1√
3

 (5)

and we have

U−1 = U † =


1√
6

1√
6

−2√
6

−1√
2

1√
2

0
1√
3

1√
3

1√
3

 (6)

since the vector V = (ex, ey, ez)X = (e⃗ ′
x , e⃗

′
y , e⃗

′
z )U

−1X,so the new coordinate in the new frame (e⃗ ′
x , e⃗

′
y , e⃗

′
z )

is
X ′ = U−1X = U †X

so the new coordinate for V1 is (0, 0, 0)T for V8 is

X ′
8 = U †(1, 1, 1)T =


1√
6

1√
6

−2√
6

−1√
2

1√
2

0
1√
3

1√
3

1√
3




1

1

1

 = (0, 0,
√
3)T

so if we look from the [1,1,1] direction, V1, V8 are both located at the origin (0, 0)T . similarly, for V2, we
have
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for V3, we have
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for V4, we have
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for V6, we have
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§2 GRAPHENE AND ITS PROPERTIES

V1, V8

V2

V3

V4 V5

V6

V7

F1

F2

F3

F4

F5

F6

Figure 3: fcc lattice look from [111] direction

for V7, we have
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similarly, for the face center, we have
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so, when we look from [1,1,1] direction, the whole graph looks as Figure 3.

§2 Graphene and Its Properties

ℜ.1 Basic Configuration

as for graphene, it‘s just the honeycomb lattice with two different atoms in each unite cell, we can
draw its structure and the corresponding BZ as the Figure 4 illustration.

The lattice vectors for the graphene structure are:

a⃗1 =
a

2
(3,−

√
3) a⃗2 =

a

2
(3,

√
3)

and the vectors connecting the nearest coupling are:

δ1 =
a

2
(1,

√
3) δ2 =

a

2
(1,−

√
3) δ3 = −a(1, 0)
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§2 GRAPHENE AND ITS PROPERTIES

a1

a2

δ1

δ2

δ3
A B

kx

ky

b1

b2

Γ
K ′

M

K

Figure 4: the lattice structure of the graphene and the corresponding Brillouin Zone. Left: the lattice structure,
a1 = a

2
(3,−

√
3) and a2 = a

2
(3,

√
3) are the lattice vectors and δ1 = 1

3
(−a1 + 2a2) = a

2
(1,

√
3),δ2 = 1

3
(2a1 − a2) =

a
2
(1,−

√
3),δ3 = − 1

3
(a1 + a2) = −a(1, 0) are the vectors connecting the nearest couplings. Right: the first BZ for

the graphene, b1 = 2π√
3a
(
√
3

3
,−1) and b2 = 2π√

3a
(
√
3
3
, 1) are the lattice vector for the reciprocal lattice. Γ = (0, 0),

K = 2
3
b1 + 1

3
b2 = 2π√
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(
√
3

3
,− 1

3
),K′ = 2
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√
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3
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√
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3
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points in the Brillouin Zone. and a is the length of the nearest bond.

the lattice vectors for the reciprocal lattice are:

b⃗1 =
2π√
3a

(

√
3

3
,−1) b⃗2 =

2π√
3a

(

√
3

3
, 1)

and there are many high symmetric points in the BZ which read as
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ℜ.2 Bulk Properties

as for graphene, we can write down the lattice tight binding model which read as

H = −t
∑

<i,j>,σ

(a†i,σbj,σ +H.c)− t′
∑

<<i,j>>,σ

(a†i,σaj,σ + b†i,σbj,σ +H.c)

the first term is the nearest coupling term for different kinds of atoms and the second term is the next
nearest coupling of the same kind of atoms for both A and B atoms.

since when we translate the unite cell with integer combination of the lattice unite vectors we can
fill the whole space and in each such translated unite cell, there are only one of each A and B atoms, so
we can use rm,n to label the position of the translated unite cell with respect to the original one, which
means that

rm,n = ma⃗1 + na⃗2

and the position of the A and B atom in the primary unite cell is rA and rB. then we can find that

rA(B),m,n = rA(B) +ma⃗1 + na⃗2
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§2 GRAPHENE AND ITS PROPERTIES

in order to derive the properties in the bulk, we should choose the periodic boundary condition and in
each direction there are N1 and N2 sites.then the Fourier transform is(k1 = b1

N1
l1 and k2 = b2

N2
l2 is along

the b1 and b2 namely, (k1, k2) = k1b̂1 + k2b̂2)
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∑
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∑
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=
∑

<(m,n),(l,s)>,σ

1

N1N2

∑
(k1,k2),(k′
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′
2)

a†k1,k2,σ
bk′
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′
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∑
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′
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ei(k1,k2)·rB,l,s(
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′
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∑
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=
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(
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i=1
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similarly, we have∑
<<i,j>>,σ

(a†i,σaj,σ +H.c)

=
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1
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′
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e−i(k1,k2)·rB,l,sei(k
′
1,k

′
2)·rB,l,s(· · · ) +H.c

(· · · ) = (e−i(k1,k2)·a1 + e−i(k1,k2)·a2 + e−i(k1,k2)·(a2−a1) + e−i(k1,k2)·−a1 + e−i(k1,k2)·−a2 + e−i(k1,k2)·−(a2−a1))

=
1

2

∑
(k1,k2),σ

(· · · )a†k1,k2,σ
ak1,k2,σ +H.c

=
∑

(k1,k2),σ

(· · · )a†k1,k2,σ
ak1,k2,σ

where the extra factor of 1
2

comes from that when we counts the next nearest bonds, we have count each
bond for twice when we sum over all the cells(because there is H.c means that the bond is un-directional),
besider (· · · ) = (e−i(k1,k2)·a1+e−i(k1,k2)·a2+e−i(k1,k2)·(a2−a1)+e−i(k1,k2)·−a1+e−i(k1,k2)·−a2+e−i(k1,k2)·−(a2−a1))

in the above equation. with the same calculation, we know that∑
<<i,j>>,σ

(b†i,σbj,σ +H.c)

=
∑

(k1,k2),σ

(· · · )b†k1,k2,σ
bk1,k2,σ

so after collecting all the terms, we know that the hamiltonian in momentum space is

H =
∑

(k1,k2),σ

{(−t(
3∑

i=1

ei(k1,k2)·δi)a†k1,k2,σ
bk1,k2,σ +H.c)− t′((· · · )a†k1,k2,σ

ak1,k2,σ + (· · · )b†k1,k2,σ
bk1,k2,σ)}

6 of 29



§2 GRAPHENE AND ITS PROPERTIES

since the spin degree of freedom is degeneracy and we can use the the following basis

γk1,k2,σ = (ak1,k2,σ, bk1,k2,σ)
T

then we have
H =

∑
(k1,k2),σ

γ†
k1,k2,σ

H(k1,k2)γk1,k2,σ

where the metrics H read as

H(k1,k2) =

(
−t′(· · · ) −t

∑3
i=1 e

−i(k1,k2)·δi

−t
∑3

i=1 e
i(k1,k2)·δi −t′(· · · )

)
(7)

the energy spectrum is

E(k1,k2) = −t′(· · · )± t|
3∑

i=1

ei(k1,k2)·δi |

since we know that
b⃗1 =

2π√
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(

√
3

3
,−1) b⃗2 =

2π√
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√
3

3
, 1)

so b̂1 =
1
2
(1,−

√
3) and b̂2 =

1
2
(1,

√
3) and b̂1 · a1 = 2π

|b⃗1|
= 3

2
a, b̂2 · a2 = 2π

|b⃗2|
= 3

2
a and b̂2 · a1 = b̂1 · a2 = 0,so

we have
Ekx,ky

= E
(kx−

ky√
3
,kx+

ky√
3
)

and we can calculate the spectrum in Ekx,ky
as(k1 = (kx − ky√

3
)b̂1,k2 = (kx +

ky√
3
)b̂2)

−t′(· · · ) = −t′(e−i(kx−
ky√

3
) 3
2a + e−i(kx+

ky√
3
) 3
2a + ei(kx−

ky√
3
) 3
2ae−i(kx+

ky√
3
) 3
2a + c.c)

= −t′(e−i(kx−
ky√

3
) 3
2a + e−i(kx+

ky√
3
) 3
2a + e−i

√
3aky + c.c)

= −t′(2 cos(
√
3aky) + 4 cos(3

2
akx) cos(

√
3

2
aky))

= −t′f(k)

where we have defined f(k) = 2 cos(
√
3aky) + 4 cos( 3

2
akx) cos(

√
3
2
aky)

−t
3∑

i=1

e−i(k1,k2)·δi = −t(e−i( 1
2akx+

√
3

2 aky) + e−i( 1
2akx−

√
3

2 aky) + e−i(−akx))

which means that

| − t
3∑

i=1

e−i(k1,k2)·δi | = t

√
3 + (ei

√
3aky + c.c) + (ei(−

3
2akx−

√
3

2 aky) + c.c) + (ei(−
3
2akx+

√
3

2 aky) + c.c)

= t
√
3 + f(k)

collecting all these terms, we can find that the spectrum of the graphene is

Ek = −t′f(k)± t
√
3 + f(k)

since we have

f(Rz(
π

3
)k⃗) = 2 cos(

√
3a(

√
3

2
kx +

1

2
ky)) + 4 cos(3

2
a(

1

2
kx −

√
3

2
ky)) cos(

√
3

2
a(

√
3

2
kx +

1

2
ky))

7 of 29



§2 GRAPHENE AND ITS PROPERTIES

= 2 cos(3
2
akx +

√
3

2
aky) + 4× 1

2
(cos(3

2
akx −

√
3

2
aky) + cos(

√
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= 2 cos(
√
3aky) + 2(cos(

3

2
akx +

√
3

2
aky) + cos(

3

2
akx −

√
3

2
aky))

= 2 cos(
√
3aky) + 4 cos(3

2
akx) cos(

√
3

2
aky) = f(k⃗)

which means that the energy band of the graphene has a six-fold rotation symmetry, so we can try
to find the energy minima just in one sixth region of the first Brillouin Zone. namely in the triangle
spanned by Γ,K,K ′ since we have in the triangle Γ,K,K ′ region, 3

2
akx ∈ (0, 3

2
a 2π√

3a

√
3
3
) = (0, π) and

√
3
2
aky ∈ (−

√
3
2
a 2π√

3a
1
3
,
√
3
2
a 2π√

3a
1
3
) = (−π

3
, π
3
) so we have

∂kx
f(k) = 4 cos(

√
3

2
aky)(−

3

2
a sin(3

2
akx)) < 0

and when kx = 2π√
3a

√
3
3

, we have

f(
2π

3a
, ky) = 2 cos(

√
3aky)− 4 cos(

√
3

2
aky) = 4(cos(

√
3

2
aky)−

1

2
)2 − 3

so as ky goes from 0 to ± 2π√
3a

1
3

the function f( 2π
3a
, ky) decrease from -2 to -3

when ky =
√
3
3
kx, we have

f(kx,

√
3

3
kx) = 2 cos(akx) + 4 cos(3

2
akx) cos(1

2
akx)

= 2 cos(2
3
t) + 4 cos(t) cos(1

3
t) (t =

3

2
akx ∈ (0, π))

= 2 cos(2
3
t) + 2(cos(2

3
t) + cos(4

3
t))

= 4(cos(2
3
t) +

1

2
)2 − 3

which means that as kx goes from 0 to 2π√
3a

√
3
3

,then (kx,
√
3
3
kx) goes from Γ point to K ′ and f(k) decrease

from 6 to -3
collecting all the discussion above together the six-fold rotation symmetry, we can have the behavior

of f(k) in the whole BZ which is illustrated in Figure 5. since for the energy band we have

Ek,+ − Ek,− = 2t
√
3 + f(k)

so we can clearly see the whole upper band and the lower band touch at f(k) = −3, which is just the K

and K ′ point. so the bulk is gapped except for the K and K ′ points which is called the Dirac points. if
we expand the f(k) near this two Dirac points, we have

f(K + k⃗) = 2 cos(−2π

3
+
√
3aky) + 4 cos(π +

3

2
akx) cos(−π

3
+

√
3

2
aky)

= 2(−1

2
cos(

√
3aky) +

√
3

2
sin(

√
3aky))− 4 cos(3

2
akx)(

1

2
cos(

√
3

2
aky) +

√
3

2
sin(

√
3

2
aky))

= −(1− 1

2
3a2k2

y) + 3aky − 4(1− 1

2

9

4
a2k2

x)(
1

2
(1− 1

2

3

4
a2k2

y) +
3

4
aky)

= −3 +
9

4
a2k2

x +
9

4
a2k2

y

so the leader term in the energy spectrum near the Dirac Points are

EK+k⃗,± = −t′(−3)±
√
3− 3 +

9

4
a2k2

x +
9

4
a2k2

y = 3t′ ± 3at

2
|⃗k|
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kx

ky

b1

b2

6
−2

−3

−3

Γ
K ′

M

K

Figure 5: the behavior of f(k) in
the Brillouin zone, the arrow means
monotonous decreasing direction of the
value.the behavior of f(k) in other re-
gions can be obtain from the triangle
ΓKK′ by the six-fold rotation symme-
try

Figure 6: the band structure of the
graphene,where we have chosen the pa-
rameter a=1 t = 2.7 and t′ = −0.2t

Figure 7: the Dirac Cone near the
Dirac Points K and K′

we can see that the dispersion relation is linear on |⃗k|,which means that this is a cone, called the Dirac
Cone near the Dirac points K and K ′. This linear relation means that the fermi velocity ∂E

∂k
remains

constant and does not rely on the energy. with all these knowledge in mind, we can draw the band
structure of the graphene (Figure 6).

ℜ.3 The Boundary Modes

as for the graphene, there are two kinds of boundary, one is called the Zigzag boundary and other
one is called armchair boundary, which is illustrated as in Figure 8

§3 Haldane model and its properties

ℜ.1 General Configuration

another important model constructed from honeycomb lattice is the famous Haldane model. Haldane
use this model to argue that the critical point for the integer quantum hall effect is not the existence of
the magnetic field but the breaking of the time reversal symmetry of the whole system. The quantum hall
effect without external magnetic field is called the anomalous quantum hall effect.

the model and it’s flux configuration is illustrated in the Figure 9. in this model, in each Lattice site
A and B, he introduced the onsite energy of M and −M∑

i∈A

Mc†ici +
∑
j∈B

(−M)c†jcj

so that the inversion symmetry of the whole system is breaking. if M=0 the symmetry group is C6,v and
if M ̸= 0, the symmetry group is C3,v.
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a1

a2

Zigzag

Armchiar

Figure 8: two kinds of boundary for graphene system, one is called the Zigzag boundary and other one is called the
Armchair boundary

aa

a

a a

a

b

b

b

b

b

b

A

A

A

B

B

B

aa

a

a a

a

b

b

b

b

b

b

a1

a2

Figure 9: Left: the overall lattice tight binding model of the Haldane model, it’s the honeycomb lattice. Right: the
flux configuration in each regular hexagons
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§3 HALDANE MODEL AND ITS PROPERTIES

besides the onsite term, there is also a nearest coupling term just like the honeycomb lattice∑
<i,j>

t1(c
†
icj + c†jci)

the most important part of this model is that to break time-reversal invariance, he also add a periodic lo-
cal magnetic-flux density B(r) in the z direction normal to the 2D plane, with the full symmetry of the
lattice, and with zero total flux through the unit cell.

since closed paths of first-neighbor hops enclose complete unit cells (and hence no net flux),the extra
phases we gain for the parameter t1 from Peierls Substitution due to the periodic magnetic filed is

ie

h̄

∫
A→B

A⃗ · d⃗l = 1

6

ie

h̄

∮
∂(Cell)

A⃗ · d⃗l = 1

6

ie

h̄

∫
Cell

B⃗ · dS⃗ =
1

6

ie

h̄
Φtotal = 0

which means that the t1 matrix elements for the nearest coupling are unaffected.
since the phase is path related, we can consider the extra phases we gain for the next nearest couplings

along the straight line which is indicated as arrow in Figure 9. so the extra phases for the t2 hopping is
ie

h̄

∫
A1→A2

A⃗ · d⃗l = ie

h̄

∫
A1→A2

A⃗ · d⃗l + ie

h̄

∫
A2→B

A⃗ · d⃗l + ie

h̄

∫
B→A2

A⃗ · d⃗l = i
e

h̄
(2Φa +Φb) = i2π

2Φa +Φb

Φ0

where Φ0 = h
e

is the fundamental flux. so we have t2 → t2e
i2π

2Φa+Φb
Φ0 if the next nearest hopping is along

the direction as the arrow shows in Figure 9.define ϕ = 2π 2Φa+Φb

Φ0
, then t2 → t2e

iϕ and the total flux in
the minor hexagons inside the unite cell is −6(Φa +Φb) so as to maintain the net flux in the entire unite
cell to be zero.

with this in mind, we can see that for atoms A ,if the next nearest hopping in the a1 direction, the
extra phase for the term c†i,Aci+a1,A is eiϕ, since it annihilates a electron at i + a1 and create an electron
at i sites, which means the electron moves from i + a1 to i along a1, which is just the same direction of
these arrows. and if the next nearest hopping is along the a2 direction, the extra phase is e−iϕ, since the
electron moves just opposite the direction of these arrows, But as for atom B, if the next nearest hopping
is along the a1 direction, the extra phase is e−iϕ, since the electron moves just opposite the direction
of these arrows. and if the next nearest hopping is along the a2 direction, the extra phase is eiϕ, since
electron moves just along the opposite direction of these arrows. with this in mind we can write down the
next nearest hopping term of this model (we use (m,n) to replace the site i since it’s two dimensional) and
write a3 = a2 − a1,

∑
(m,n)∈A

t2(e
iϕc†(m,n)c(m,n)+a1

+ e−iϕc†(m,n)c(m,n)+a2
+ eiϕc†(m,n)c(m,n)+a2−a1

+ e−iϕc†(m,n)c(m,n)−a1
+ eiϕc†(m,n)c(m,n)−a2

+ e−iϕc†(m,n)c(m,n)−(a2−a1))

∑
(m,n)∈B

t2(e
−iϕc†(m,n)c(m,n)+a1

+ eiϕc†(m,n)c(m,n)+a2
+ e−iϕc†(m,n)c(m,n)+a2−a1

+ eiϕc†(m,n)c(m,n)−a1
+ e−iϕc†(m,n)c(m,n)−a2

+ eiϕc†(m,n)c(m,n)−(a2−a1))

note that the above one has no H.c, since we think that this term is for one specific atoms connection to
the next nearest ones. similarly we can use the Fourier Transform to move on to the momentum space

cA(B),k1,k2,σ =
1√

N1N2

∑
m,n

e−i(k1,k2)·rA(B),m,ncA(B),m,n,σ
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§3 HALDANE MODEL AND ITS PROPERTIES

cA(B),m,n,σ =
1√

N1N2

∑
k1,k2

ei(k1,k2)·rA(B),m,ncA(B),k1,k2,σ

the onsite term is just simply:∑
(m,n)

±Mc†(m,n)c(m,n) =
∑
(m,n)

±M
∑

(k1,k2)

∑
(k′

1,k
′
2)

1

N1N2

a†k1,k2
ak′

1,k
′
2
e−i(k1,k2)·rm,nei(k

′
1,k

′
2)·rm,n

= ±M
∑

(k1,k2)

∑
(k′

1,k
′
2)

a†k1,k2
ak′

1,k
′
2
δk1,k′

1
δk2,k′

2

= ±M
∑

(k1,k2)

a†k1,k2
ak1,k2

which means that the onsite terms is

M
∑

(k1,k2)

a†k1,k2,A
ak1,k2,A −M

∑
(k1,k2)

a†k1,k2,B
ak1,k2,B

since t1 is unaffected, so the nearest hopping term is the same as the graphene∑
<i,j>,σ

(a†i,σbj,σ +H.c)

=
∑

<(m,n),(l,s)>,σ

1

N1N2

∑
(k1,k2),(k′

1,k
′
2)

a†k1,k2,σ
bk′

1,k
′
2,σ

e−i(k1,k2)·rA,m,nei(k
′
1,k

′
2)·rB,l,s +H.c

=
∑

(l,s),σ

1

N1N2

∑
(k1,k2),(k′

1,k
′
2)

a†k1,k2,σ
bk′

1,k
′
2,σ

e−i(k1,k2)·rB,l,s(
3∑

i=1

e−i(k1,k2)·δi)ei(k
′
1,k

′
2)·rB,l,s +H.c

=
∑

(k1,k2),(k′
1,k

′
2),σ

a†k1,k2,σ
bk′

1,k
′
2,σ

δk1,k′
1
δk2,k′

2
(

3∑
i=1

e−i(k1,k2)·δi) +H.c

=
∑

(k1,k2),σ

(
3∑

i=1

e−i(k1,k2)·δi)a†k1,k2,σ
bk1,k2,σ +H.c

finally, we consider the next nearest coupling term. at first, we consider a more general case∑
(m,n)

a†(m,n)a(m,n)+(t,s) =
∑
(m,n)

∑
k1,k2

∑
k′
1,k

′
2

1

N1N2

a†k1,k2
ak′

1,k
′
2
e−i(k1,k2)·(m,n)ei(k

′
1,k

′
2)·[(m,n)+(t,s)]

=
∑
k1,k2

∑
k′
1,k

′
2

ei(k
′
1,k

′
2)·(t,s)

∑
(m,n)

1

N1N2

a†k1,k2
ak′

1,k
′
2
e−i(k1,k2)·(m,n)ei(k

′
1,k

′
2)·(m,n)

=
∑
k1,k2

∑
k′
1,k

′
2

ei(k
′
1,k

′
2)·(t,s)a†k1,k2

ak′
1,k

′
2
δk1,k′

1
δk2,k′

2

=
∑
k1,k2

ei(k1,k2)·(t,s)a†k1,k2
ak1,k2

so finally, collecting all the terms, we have the whole hamiltonian in momentum space read as

H = M
∑

(k1,k2)

a†k1,k2,A
ak1,k2,A −M

∑
(k1,k2)

a†k1,k2,B
ak1,k2,B

+ t1
∑

(k1,k2)

(
3∑

i=1

e−i(k1,k2)·δi)a†k1,k2,A
ak1,k2,B +H.c

+
∑

(k1,k2)

t2(e
iϕei(k1,k2)·a1 + e−iϕei(k1,k2)·a2 + eiϕei(k1,k2)·a3 + h.c)a†k1,k2,A

ak1,k2,A
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δ1

δ2

δ3

a3

a1 a2

A

A

A

B

B

B

Figure 10: the redefined vectors

+
∑

(k1,k2)

t2(e
−iϕei(k1,k2)·a1 + eiϕei(k1,k2)·a2 + e−iϕei(k1,k2)·a3 + h.c)a†k1,k2,B

ak1,k2,B

if we write (k1, k2) as k and use the the basis γk = (ak,A, ak,B)
T , then we have

H =
∑
k

γ†
kHkγk

and the diagonal part in the momentum space is

Hk =

(
M + t2(e

iϕeik·a1 + e−iϕeik·a2 + eiϕeik·a3 + h.c) t1
∑3

i=1 e
−ik·δi

t1
∑3

i=1 e
ik·δi −M + t2(e

−iϕeik·a1 + eiϕeik·a2 + e−iϕeik·a3 + h.c)

)
(8)

in order to make full the expression more symmetric, we can redefine the vetor so that a1 + a2 + a3 = 0

a1 → −a2

a2 → a1

a3 → −a3

we can see this change in the Figure 10. after this new redefinition, the hamiltonian becomes(ϕ → −ϕ

this because different paper use different sign convention for Peierls Substitution, this is a difference from
ϕ → −ϕ and in this notes I want to follow Haldane’s original paper)

Hk =

(
M + t2(e

−iϕeik·−a2 + eiϕeik·a1 + e−iϕeik·−a3 + h.c) t1
∑3

i=1 e
−ik·δi

t1
∑3

i=1 e
ik·δi −M + t2(e

iϕeik·−a2 + e−iϕeik·a1 + eiϕeik·−a3 + h.c)

)

=

(
M + t2(

∑3
i=1 e

iϕeik·ai + h.c) t1
∑3

i=1 e
−ik·δi

t1
∑3

i=1 e
ik·δi −M + t2(

∑3
i=1 e

−iϕeik·ai + h.c)

)
since

3∑
i=1

e−ik·δi =
3∑

k=1

cos(k · δi)− i sin(k · δi)

3∑
i=1

eiϕeik·ai + h.c = 2
3∑

i=1

cos(ϕ+ k · ai) = 2
3∑

i=1

cos(ϕ) cos(k · ai)− sin(ϕ) sin(k · ai)
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kx

ky

b1

b2

0
0

−3
√
3

3
√
3

Γ
K ′

M

K

Figure 11: the behavior of the function g(k)

3∑
i=1

e−iϕeik·ai + h.c = 2
3∑

i=1

cos(ϕ− k · ai) = 2
3∑

i=1

cos(ϕ) cos(k · ai) + sin(ϕ) sin(k · ai)

so finally, we have that the block diagonal hamiltonian in momentum space is

Hk = 2t2

3∑
i=1

cos(ϕ) cos(k · ai)I + t1

3∑
i=1

cos(k · δi)σx + t1

3∑
k=1

sin(k · δi)σy + (M − 2t2

3∑
i=1

sin(ϕ) sin(k · ai))σz

which is the same as the formula given in Haldane’s original paper[1].

ℜ.2 The band structure and phase diagram

next we need to consider the energy spectrum and the corresponding topological phases in this system.
since when M = 0 and ϕ = 0, this model is just the graphene model, so we can use the previous result
that ∑

i

2 cos(k · ai) = f(k) = 2 cos(
√
3aky) + 4 cos(3

2
akx) cos(

√
3

2
aky)

and
|
∑
i

cos(k · δi)|2 + |
∑
i

sin(k · δi)|2 = 3 + f(k)

on the other hand, we know that

a1 = δ2 − δ3 =
a

2
(3,

√
3) a1 = δ3 − δ1 =

a

2
(−3,

√
3) a3 = δ1 − δ2 =

a

2
(0,−2

√
3)

so we know that

2
∑
i

sin(k · ai) = 2 sin(a
2
(3kx +

√
3ky)) + 2 sin(a

2
(−3kx +

√
3ky)) + 2 sin(a

2
(−2

√
3ky))

= 4 sin(
√
3

2
aky) cos(3

2
akx)− 2 sin(

√
3aky) = g(k)

fallowing the same discussion about the function f(k), we can find that from Γ to K, g(k) increasingly
from 0 to 3

√
3, from K to K ′, it then deceasing from 3

√
3 to −3

√
3, and for fixed kx, it decrease as ky

increase, which are illustrated in Figure 11. then the spectrum is just

Ek,± = t2 cos(ϕ)f(k)±
√
t21(3 + f(k)) + (M − t2 sin(ϕ)g(k))2
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then we examine some special points, we can find that at the K and K ′ points, we have (since in Haldane’

s original paper, he labelled δ1, δ2 in such a way that z · (δ1 × δ2) is positive, so we should replace
δ1 → δ2, δ2 → δ1 from the notation in the section Honeycomb lattice in previous one.)

K · δ1 =
2π√
3
(

√
3

3
,−1

3
) · a

2
(1,−

√
3) =

2π

3

K · δ2 =
2π√
3
(

√
3

3
,−1

3
) · a

2
(1,

√
3) = 0

K · δ3 =
2π√
3
(

√
3

3
,−1

3
) · a(−1, 0) = −2π

3

K ′ · δ1 =
2π√
3
(

√
3

3
,
1

3
) · a

2
(1,−

√
3) = 0

K ′ · δ2 =
2π√
3
(

√
3

3
,
1

3
) · a

2
(1,

√
3) =

2π

3

K ′ · δ3 =
2π√
3
(

√
3

3
,
1

3
) · a(−1, 0) = −2π

3

since the band close only when the coefficient of Pauli metrics are all vanishing, From the properties of
Graphene, we know that this can only happens at the Dirac Points.In these points

∑
i cos(K · δi) = 0 and∑

i sin(K · δi) = 0 and∑
i

sin(K · ai) = sin(2π
3
) + sin(−4π

3
) + sin(2π

3
) = 3 sin(2π

3
) =

3

2

√
3

∑
i

sin(K ′ · ai) = sin(4π
3
) + sin(−2π

3
) + sin(−2π

3
) = −3 sin(2π

3
) = −3

2

√
3

so in order to make the coefficient of σz to vanish, the value for M should be

K : M = 3
√
3t2 sin(ϕ)

K ′ : M = −3
√
3t2 sin(ϕ)

in order to make sure that the energy spectrum never overlap unless they are touched, we can further
require that

Emax
k,− ≤ Emin

k,+

this can be done by choosing small enough t2 since when t2 = 0, this upper band is always larger than
zero and the lower band is always smaller than zero(the spectrum is a continuous function of t2).

when M = 0 and t2 sinϕ = 0, then at K and K ′ points, the band gap close at the same time, so this
Eigen value of this system has the symmetry of C3,v(Inversion interchange the K and K ′ points). But if
one of M = 0 and t2 sinϕ = 0 is violated, the condition M = 3

√
3t2 sin(ϕ),M = −3

√
3t2 sin(ϕ) can not

be satisfied at the same time, so either the tree K points or the three K ′ points are closing at the same
time, and the symmetry group of this system is reduced to C3 group. And the topological phases of this
system is illustrated in Figure 12.

in order to see the low energy level properties of this system, we can expand the hamiltonian near
the K and K ′ points.near the K Points, we have

3∑
i=1

cos((K + k) · δi) = cos(2π
3

+
1

2
akx −

√
3

2
aky) + cos(0 + 1

2
akx +

√
3

2
aky) + cos(−2π

3
− akx)
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v=0

v=0

v=+1v=-1

ϕ

M

Figure 12: Phase diagram of Haldane Model

= −1

2
cos(1

2
akx −

√
3

2
aky)−

√
3

2
sin(1

2
akx −

√
3

2
aky) + cos(1

2
akx +

√
3

2
aky)

− 1

2
cos(akx)−

√
3

2
sin(akx)

(linear term) ∼ −1

2
−

√
3

2
(
1

2
akx −

√
3

2
aky) + 1− 1

2
−

√
3

2
akx

=
3a

2
(−

√
3

2
kx +

1

2
ky)

similarly, we have
3∑

i=1

sin((K + k) · δi) = sin(2π
3

+
1

2
akx −

√
3

2
aky) + sin(0 + 1

2
akx +

√
3

2
aky) + sin(−2π

3
− akx)

=

√
3

2
cos(1

2
akx −

√
3

2
aky)−

1

2
sin(1

2
akx −

√
3

2
aky) + sin(1

2
akx +

√
3

2
aky)

−
√
3

2
cos(akx) +

1

2
sin(akx)

(linear term) ∼
√
3

2
− 1

2
(
1

2
akx −

√
3

2
aky) + (

1

2
akx +

√
3

2
aky)−

√
3

2
+

1

2
akx

=
3a

2
(
1

2
kx +

√
3

2
ky)

if we define

h(k) =
3∑

i=1

eik·δi

we can find that

h(Rz(
π

3
)k) =

3∑
i=1

e−ik·δi = h(k)∗

and the coefficients of σx, σy is just
3∑

i=1

cos(k · δi) = Re{h(k)}
3∑

i=1

sin(k · δi) = Im{h(k)}

so using these result we can derive that near −K:
3∑

i=1

cos((−K + k) · δi) =
3a

2
(

√
3

2
kx −

1

2
ky)
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3∑
i=1

sin((−K + k) · δi) =
3a

2
(
1

2
kx +

√
3

2
ky)

similarly, near the K ′ points, we have
3∑

i=1

cos((K ′ + k) · δi) = cos(0 + 1

2
akx −

√
3

2
aky) + cos(2π

3
+

1

2
akx +

√
3

2
aky) + cos(−2π

3
− akx)

= cos(1
2
akx −

√
3

2
aky)−

1

2
cos(1

2
akx +

√
3

2
aky)−

√
3

2
sin(1

2
akx +

√
3

2
aky)

− 1

2
cos(akx)−

√
3

2
sin(akx)

(linear term) ∼ 1− 1

2
−

√
3

2
(
1

2
akx +

√
3

2
aky)−

1

2
−

√
3

2
akx

=
3a

2
(−

√
3

2
kx −

1

2
ky)

3∑
i=1

sin((K ′ + k) · δi) = sin(0 + 1

2
akx −

√
3

2
aky) + sin(2π

3
+

1

2
akx +

√
3

2
aky) + sin(−2π

3
− akx)

= sin(1
2
akx −

√
3

2
aky) +

√
3

2
cos(1

2
akx +

√
3

2
aky)−

1

2
sin(1

2
akx +

√
3

2
aky)

−
√
3

2
cos(akx) +

1

2
sin(akx)

(linear term) ∼ (
1

2
akx −

√
3

2
aky) +

√
3

2
− 1

2
(
1

2
akx +

√
3

2
aky)−

√
3

2
+

1

2
akx

=
3a

2
(
1

2
kx −

√
3

2
ky)

so if we define (x, y)K [k] = (
∑3

i=1 cos((K + k) · δi),
∑3

i=1 sin((K + k) · δi)) and similarly for (x, y)K′ [k], we
can find that

(x, y)K [k] =
3

2
aRz(−

π

6
)(−kx, ky)

T =
3

2
aRz(

π

3
)(ky, kx)

T → (x, y)K [−σzRz(
π

6
)k⃗] =

3

2
ak⃗

(x, y)K′ [k] =
3

2
aRz(

5π

6
)(kx, ky)

T → (x, y)K′ [Rz(−
5π

6
)k⃗] =

3

2
ak⃗

we can see clearly see that the Energy spectrum of graphene has C6 symmetry , but the symmetry group
for the hamiltonian of graphene is C3 due to the fact that the nearest coupling term(

∑
i e

−ik·δi) only take
C3 symmetry.

with the above expansion in mind, we can write the effective hamiltonian in this system near the K
and K ′ points as

3a

2
t1(kxσx + kyσy)

on the other hand, since the leading term of 2
∑

i sin((K + k) · ai) = 2
∑

i(sin(K · ai) cos(k · ai) + cos(K ·
ai) sin(k · ai)) = 2

∑
i sin(K · ai) = g(K), so we can write down the whole expansion of the Haldane model

near the Dirac point:

K : H = −6t2 cos(ϕ)I + 3

2
at1Rz(−

π

6
)(−kx, ky)

T · (σx, σy) + (M − 3
√
3t2 sin(ϕ))σz

K ′ : H = −6t2 cos(ϕ)I + 3

2
at1Rz(

5π

6
)(kx, ky)

T · (σx, σy) + (M + 3
√
3t2 sin(ϕ))σz
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§4 QUANTUM SPIN HALL EFFECT IN GRAPHENE

after ignoring the constant term and by redefining the k⃗ vectors, we can write down the following effective
hamiltonian:

H =
3

2
at1(kα,1, kα,2) · (σx, σy) + (M − α3

√
3t2 sin(ϕ))σz

where α = + is for K points and α = − is for K ′ points.

§4 Quantum Spin Hall Effect in Graphene

ℜ.1 The Bulk Properties

another important model constructed in the honeycomb lattice is the so called model for the quantum
spin hall effect, which can be regarded as the extended Haldane model which include the spin degree of
freedom in each sites.in this model, we will consider the whole hamiltonian and the low energy effective
hamiltonian.

the first term in this model is the onsite energy term, which read as

Hν =
∑
i∈A

λνc
†
ici +

∑
i∈B

−λνc
†
ici

when we transfer to the momentum space, this term is just∑
k

λνc
†
k,Ack,A −

∑
k

λνc
†
k,Bck,B

when we consider the low energy effective hamiltonian, we should project this one to the points near
the K and K ′ points, if we use the basis Ψ = (cK,A, cK,B, cK′,A, cK′,B)

T ,then we can write the effective
hamiltonian as Ψ†HlowΨ then the above term contribute to Hlow the following metrics:

Hν → λν


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 = I ⊗ σz

where the previous one in the tensor product act on the (K,K ′) block and the second factor σz act on
the (A,B) sublattice. the second term in this model is the same nearest coupling term:

Ht = t
∑

<i,j>,σ

c†i,σcj,σ

using the results in previous section, we know this term in momentum space is just

Ht,k = t
3∑

i=1

cos(k · δi)σx + t
3∑

k=1

sin(k · δi)σy

near the K and K ′ points, we know that

Ht,K =
3a

2
tRz(−

π

6
)(−kx, ky)

T · (σx, σy)

Ht,K′ =
3a

2
tRz(

5π

6
)(kx, ky)

T · (σx, σy)

since we know that

Rz(−
π

6
)(−kx, ky)

T = Rz(−
π

6
)− σz(kx, ky)

T = −σzRz(
π

6
)(kx, ky)

T
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1

1

1
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A

B

B

B

Figure 13: the sign convention for vi,j for the term Hso in the QSH model

since the system has a C3 symmetry and Rz(
5π
6
)(kx, ky)

T = Rz(
2π
3
)Rz(

π
6
)(kx, ky)

T , we can make the incre-
ment on (kx, ky) near K along the direction Rz(

π
6
)(kx, ky)

T and near K ′ along the direction Rz(
5π
6
)(kx, ky)

T ,
then this term contribute to the low energy effective hamiltonian metrics as

Ht →
3a

2
t

(
−kxσx + kyσy 0

0 kxσx + kyσy

)
=

3a

2
t(−τz ⊗ σx + I ⊗ σy)

where the Pauli metrics τi act on the (K,K ′) block. if we redefine the kx → −kx, then this term is just

3a

2
t(−τz ⊗ σx + I ⊗ σy) →

3a

2
t(τz ⊗ σx + I ⊗ σy) = vF (τz ⊗ σx + I ⊗ σy)

and the third term is not the original one in Haldane’s papers, it has the following form instead:

Hso =
∑

<<i,j>>

iλsovi,jc
†
is

zcj

where vi,j =
2√
3
(d̂1 × d̂2)z = ±1 and d1, d2 is are vectors along the two bonds the electron traverse going

from site j to i. and the sign of these values is depicted in the Figure 13 with these illustration, we can
write down the term for Hso explicitly as:

Hso = iλso
∑

(m,n)∈B

(c†(m,n)s
zc(m,n)+a1

+ c†(m,n)s
zc(m,n)+a2

+ c†(m,n)s
zc(m,n)+a3

− c†(m,n)s
zc(m,n)−a1

− c†(m,n)s
zc(m,n)−a2

− c†(m,n)s
zc(m,n)−a3

)

+ iλso
∑

(m,n)∈A

(−c†(m,n)s
zc(m,n)+a1

− c†(m,n)s
zc(m,n)+a2

− c†(m,n)s
zc(m,n)+a3

+ c†(m,n)s
zc(m,n)−a1

+ c†(m,n)s
zc(m,n)−a2

+ c†(m,n)s
zc(m,n)−a3

)

so when making Fourier Transform to this term, we have

Hso = iλso
∑
k

c†k,Bs
zck,B(e

ik·a1 + eik·a2 + eik·a3 − eik·−a1 − eik·−a2 − eik·−a3)
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+ iλso
∑
k

c†k,As
zck,A(−eik·a1 − eik·a2 − eik·a3 + eik·−a1 + eik·−a2 − eik·−a3)

define g(k) = −i(eik·a1 + eik·a2 + eik·a3 − eik·−a1 − eik·−a2 − eik·−a3) = 2
∑3

i=1 sin(k · ai) then

Hso = λso
∑
k

−g(k)c†k,Bs
zck,B + g(k)c†k,As

zck,A

since from Haldane’s model we know that g(K) = 3
√
3 and g(K ′) = −3

√
3, so this term contribute to the

low energy effective hamiltonian with the following term:

Hso → 3
√
3λso

(
σzs

z 0

0 −σzs
z

)
= 3

√
3λsoτz ⊗ σz ⊗ sz

the last term in this model is the nearest neighbor Rashba term

HR = iλR

∑
<i,j>

c†i (s× d̂ij)zcj

where d̂ij is the nearest bond from i to j. we can write done this term more concrete as

HR = iλR

∑
(m,n)

(c†(m,n),A(s×−δ̂1)zc(m,n)−δ1,B + c†(m,n),A(s×−δ̂2)zc(m,n)−δ2,B + c†(m,n),A(s×−δ̂3)zc(m,n)−δ3,B)

+ iλR

∑
(m,n)

(c†(m,n),B(s× δ̂1)zc(m,n)+δ1,A + c†(m,n),B(s× δ̂2)zc(m,n)+δ2,A + c†(m,n),B(s× δ̂3)zc(m,n)+δ3,A)

if we make Fourier transform to this term, it read as

HR = iλR

∑
k

(c†k,Ae
−ik·δ1(−s× δ̂1)zck,B + c†k,Ae

−ik·δ2(−s× δ̂2)zck,B + c†k,Ae
−ik·δ3(−s× δ̂3)zck,B)

+ iλR

∑
k

(c†k,Be
ik·δ1(s× δ̂1)zck,A + c†k,Be

ik·δ2(s× δ̂2)zck,A + c†k,Be
ik·δ3(s× δ̂3)zck,A)

since we have (s× δ̂1)z = −
√
3
2
sx − 1

2
sy, (s× δ̂2)z =

√
3
2
sx − 1

2
sy and (s× δ̂3)z = sy, so we have

HR = iλR

∑
k

(c†k,A{s
x(

√
3

2
e−ik·δ1 −

√
3

2
e−ik·δ2) + sy(

1

2
e−ik·δ1 +

1

2
e−ik·δ2 − e−ik·δ3)}ck,B

+ iλR

∑
k

(c†k,B{s
x(−

√
3

2
eik·δ1 +

√
3

2
eik·δ2) + sy(−1

2
eik·δ1 − 1

2
eik·δ2 + eik·δ3)}ck,A

since we know that
√
3

2
e−ik·δ1 −

√
3

2
e−ik·δ2 =

√
3

2
e−i 1

2akx+i
√

3
2 aky −

√
3

2
e−i 1

2akx−i
√

3
2 aky

= i
√
3 sin(

√
3

2
aky)e

−i 1
2akx

=
√
3 sin(

√
3

2
aky) sin(1

2
akx) + i

√
3 sin(

√
3

2
aky) cos(1

2
akx)

: = (−i)zxk

1

2
e−ik·δ1 +

1

2
e−ik·δ2 − e−ik·δ3 =

1

2
e−i 1

2akx+i
√

3
2 aky +

1

2
e−i 1

2akx−i
√

3
2 aky − eiakx
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= cos(
√
3

2
aky)e

−i 1
2akx − eiakx

= (cos(
√
3

2
aky) cos(1

2
akx)− cos(akx))− i(cos(

√
3

2
aky) sin(1

2
akx) + sin(akx))

: = (−i)zyk

then the nearest neighbor Rashba term can be written as

HR = λR

∑
k

(c†k,A{s
xzxk + syzyk}ck,B

λR

∑
k

(c†k,B{s
xzx,∗k + syzy,∗k }ck,A

in order to write down the low energy effective hamiltonian, we need to calculate some values at K and
K ′ points, we have

√
3

2
e−iK·δ1 −

√
3

2
e−iK·δ2 =

√
3

2
e−i 2π

3 −
√
3

2
e−i0 = −3

4

√
3− 3

4
i = −izxK → zxK =

3

2
e−iπ

3

1

2
e−iK·δ1 +

1

2
e−iK·δ2 − e−iK·δ3 =

1

2
e−i 2π

3 +
1

2
− ei

2π
3 = −3

4

√
3i+

3

4
= −izyK → zyK = i

3

2
e−iπ

3 = izxK
√
3

2
e−iK′·δ1 −

√
3

2
e−iK′·δ2 =

√
3

2
e−i0 −

√
3

2
e−i 2π

3 =
3

4

√
3 +

3

4
i = −izxK′ → zxK′ = −3

2
e−iπ

3 = −zxK

1

2
e−iK′·δ1+

1

2
e−iK′·δ2−e−iK′·δ3 =

1

2
e−i0+

1

2
e−i 2π

3 −ei
2π
3 = −3

4

√
3i+

3

4
= −izyK′ → zyK′ = i

3

2
e−iπ

3 = izxK = zyK

so in the low energy effective hamiltonian, this term contribution with the following metrics

HR = λR


0 zxKsx + zyKsy 0 0

zx,∗K sx + zy,∗K sy 0 0 0

0 0 0 zxK′sx + zyK′sy

0 0 zx,∗K′ sx + zy,∗K′ sy 0



λR


0 zxKsx + izxKsy 0 0

zx,∗K sx − izx,∗K sy 0 0 0

0 0 0 −zxKsx + izxKsy

0 0 −zx,∗K sx − izx,∗K sy 0


= λR(τz(Re[zxK ]σx − Im[zxK ]σy)s

x + (−Im[zxK ]σx − Re[zxK ]σy)s
y)

this is not consistent with the original paper of C.L.Kane and I don’t know why. Finally, we have the full
hamiltonian inn real space:

H = Hν +Ht +Hso +HR

=
∑
i∈A

λνc
†
ici +

∑
i∈B

−λνc
†
ici + t

∑
<i,j>,σ

c†i,σcj,σ +
∑

<<i,j>>

iλsovi,jc
†
is

zcj + iλR

∑
<i,j>

c†i (s× d̂ij)zcj

and in the Fourier space read as

Hk =
∑
k

λνc
†
k,Ack,A −

∑
k

λνc
†
k,Bck,B

+ t(
3∑

i=1

e−ik·δi)c†k,Ack,B + t(
3∑

i=1

eik·δi)c†B,Ack,A
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+ λso
∑
k

−g(k)c†k,Bs
zck,B + g(k)c†k,As

zck,A

+ λR

∑
k

c†k,A{s
xzxk + syzyk}ck,B + λR

∑
k

c†k,B{s
xzx,∗k + syzy,∗k }ck,A

or write in the basis (ck,A, ck,B) as metrics:

Hk = λνσz + t
3∑

i=1

cos(k · δi)σx + t
3∑

k=1

sin(k · δi)σy + λsog(k)σzs
z

+ λR(Re[zxk ]σx − Im[zxk ]σy)s
x + λR(Re[zyk ]σx − Im[zyk ]σy)s

y (9)

and the lower energy effective hamiltonian can be written as

H = I ⊗ σz + vF (τz ⊗ σz + I ⊗ σy) + 3
√
3λsoτz ⊗ σz ⊗ sz

+ λR(τz(Re[zxK ]σx − Im[zxK ]σy)s
x + (−Im[zxK ]σx − Re[zxK ]σy)s

y)

= I ⊗ σz + vF (τz ⊗ σz + I ⊗ σy) + 3
√
3λsoτz ⊗ σz ⊗ sz

+
3

4
λR(τz ⊗ (σx +

√
3σy)⊗ sx + (

√
3σx − σy)⊗ sy)

if we define the time reversal operator as T = I ⊗ (isy)K, then T−1 = I ⊗ (−isy)K, when we consider a
specific points in the Brillouin Zone, the 4X4 metrics can be expand by the sixteen Dirac Metrics σi ⊗ sj ,
we example the behavior of these metrics under Time Reversal

TI ⊗ IT−1 = (I ⊗ (isy)K)I ⊗ I(I ⊗ (−isy)K) = I ⊗ (syIsy) = I ⊗ I even

TI ⊗ sxT−1 = (I ⊗ (isy)K)I ⊗ sx(I ⊗ (−isy)K) = I ⊗ (sysxsy) = −I ⊗ sx odd

TI ⊗ syT−1 = (I ⊗ (isy)K)I ⊗ sy(I ⊗ (−isy)K) = I ⊗ (−sysysy) = −I ⊗ sy odd

TI ⊗ szT−1 = (I ⊗ (isy)K)I ⊗ sz(I ⊗ (−isy)K) = I ⊗ (syszsy) = −I ⊗ sz odd

Tσx ⊗ IT−1 = (I ⊗ (isy)K)σx ⊗ I(I ⊗ (−isy)K) = σx ⊗ (syIsy) = σx ⊗ I even

Tσx ⊗ sxT−1 = (I ⊗ (isy)K)σx ⊗ sx(I ⊗ (−isy)K) = σx ⊗ (sysxsy) = −σx ⊗ sx odd

Tσx ⊗ syT−1 = (I ⊗ (isy)K)σx ⊗ sy(I ⊗ (−isy)K) = σx ⊗ (−sysysy) = −σx ⊗ sy odd

Tσx ⊗ szT−1 = (I ⊗ (isy)K)σx ⊗ sz(I ⊗ (−isy)K) = σx ⊗ (syszsy) = −σx ⊗ sz odd

Tσy ⊗ IT−1 = (I ⊗ (isy)K)σy ⊗ I(I ⊗ (−isy)K) = −σy ⊗ (syIsy) = −σy ⊗ I odd

Tσy ⊗ sxT−1 = (I ⊗ (isy)K)σy ⊗ sx(I ⊗ (−isy)K) = −σy ⊗ (sysxsy) = σy ⊗ sx even

Tσy ⊗ syT−1 = (I ⊗ (isy)K)σy ⊗ sy(I ⊗ (−isy)K) = −σy ⊗ (−sysysy) = σy ⊗ sy even

Tσy ⊗ szT−1 = (I ⊗ (isy)K)σy ⊗ sz(I ⊗ (−isy)K) = −σy ⊗ (syszsy) = σy ⊗ sz even

Tσz ⊗ IT−1 = (I ⊗ (isy)K)σz ⊗ I(I ⊗ (−isy)K) = σz ⊗ (syIsy) = σx ⊗ I even

Tσz ⊗ sxT−1 = (I ⊗ (isy)K)σz ⊗ sx(I ⊗ (−isy)K) = σz ⊗ (sysxsy) = −σz ⊗ sx odd

Tσz ⊗ syT−1 = (I ⊗ (isy)K)σz ⊗ sy(I ⊗ (−isy)K) = σz ⊗ (−sysysy) = −σz ⊗ sy odd

Tσz ⊗ szT−1 = (I ⊗ (isy)K)σz ⊗ sz(I ⊗ (−isy)K) = σz ⊗ (syszsy) = −σz ⊗ sz odd

so besides the I ⊗ I there are only five are even under time reversal T

Γ1 = σx ⊗ I
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Γ2 = σz ⊗ I

Γ3 = σy ⊗ sx

Γ4 = σy ⊗ sy

Γ5 = σy ⊗ sz

since others are odd, which can be written as Γa,b := [Γa,Γb]
2i

.namely

Γ1,2 = −σy ⊗ I Γ1,3 = σz ⊗ sx Γ1,4 = σz ⊗ sy Γ1,5 = σz ⊗ sz

Γ2,3 = −σx ⊗ sx Γ2,4 = −σx ⊗ sy Γ2,5 = −σx ⊗ sz

Γ3,4 = I ⊗ sz Γ3,5 = −I ⊗ sy

Γ4,5 = I ⊗ sx

then the equation (9) can be written in these basis as

Hk = λνΓ
2 + (t

3∑
i=1

cos(k · δi))Γ1 + (t
3∑

i=1

sin(k · δi))(−Γ1,2) + λsog(k)Γ
1,5

+ λRRe[zxk ](−Γ2,3)− λRIm[zxk ]Γ
3 + λRRe[zyk ](−Γ2,4)− λRIm[zyk ]Γ

4

where we have define

g(k) = 2
3∑

i=1

sin(k · ai)

and
3∑

i=1

e−ik·δi(−s× δi)z = −i(zxks
x + zyks

y)

ℜ.2 The boundary Modes

in oder to work out the boundary modes, we should take periodic boundary condition in one dimension
and open boundary condition in other dimension, which means that we can only make Fourier transform
in one dimension of the lattice sites.Suppose that we choose periodic boundary condition along the a2

direction, in this case we can write down that:

cm,k =
1√
N2

N2∑
n=1

e−ik·rm,nc(m,n)

cm,n =
1√
N2

∑
k

eik·rm,ncm,k

in this case the onsite term in the model becomes:∑
(m,n)

c†m,ncm,n =
∑
(m,n)

1

N2

∑
k,k′

e−ik·rm,ne−ik′·rm,nc†m,kcm,k′

=
∑
m

∑
k,k′

c†m,kcm,k′δk,k′

=
∑
k

∑
m

c†m,kcm,k

considering there are two kinds of atoms in each unite cell, we have the onsite term in k block read as

λν

∑
m

c†m,k,Acm,k,A − λν

∑
m

c†m,k,Bcm,k,B
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with the same reason, the nearest coupling term becomes

t1
∑

<(m,n),(m′,n′)>

c†(m,n),Ac(m′,n′),B = t1
∑

<(m,n),(m′,n′)>

1

N2

∑
k,k′

e−ik·rm,neik
′·rm′,n′ c†m,k,Acm′,k′,B

= t1
∑
(m,n)

1

N2

∑
k,k′

e−ik·rm,neik
′·rm,n(

∑
i

eik
′·δi,2c†m,k,Ac(m+δi,1),k′,B)

= t1
∑
m

∑
k,k′

δk,k′(
∑
i

eik
′·δi,2c†m,kcm+δi,1,k′)

= t1
∑
k

∑
m

(
∑
i

eik·δi,2c†m,kcm+δi,1,k)

the k block is just

t1
∑
m

(
∑
i

eik·δi,2c†m,kcm+δi,1,k) + h.c

= t1
∑
m

(e−ik·δ3,2c†m,k,Acm,B,k + e−ik·δ1,2c†m,k,Acm−1,B,k + e−ik·δ2,2c†m,k,Acm,B,k)

+ t1
∑
m

(eik·δ1,2c†m,k,Bcm+1,A,k + eik·δ2,2c†m,k,Bcm,A,k + eik·δ3,2c†m,k,Bcm,A,k)

then we consider the next nearest SO term, as for this term, at first we consider the general term
with the following form:∑

(m,n)

c†(m,n)c(m,n)+(r,s) =
∑
(m,n)

∑
k,k′

1

N2

e−ik·r(m,n),2eik
′·r(m,n)+(r,s),2c†m,kcm+r,k′

=
∑
(m,n)

∑
k,k′

1

N2

e−ik·r(m,n),2eik
′·r(m,n),2eik

′·sa2c†m,kcm+r,k′

=
∑
m

∑
k,k′

δk,k′eik·sa2c†m,kcm+r,k′

=
∑
m

∑
k

eik·sa2c†m,kcm+r,k

and the corresponding diagonal k block is ∑
m

eik·sa2c†m,kcm+r,k

so if we let a1 and a2 be the primitive lattice vectors of graphene as Figure 14 shows, we can write down
the term of Hso as:

Hso = iλso
∑
m

(c†m,k,As
zcm+1,k,Ae

ik·0 − c†m,k,As
zcm,k,Ae

ik·a2 + c†m,k,As
zcm−1,k,Ae

ik·a2

− c†m,k,As
zcm−1,k,Ae

ik·0 + c†m,k,As
zcm,k,Ae

ik·−a2 − c†m,k,As
zcm+1,k,Ae

ik·−a2)

+ iλso
∑
m

(−c†m,k,Bs
zcm+1,k,Be

ik·0 + c†m,k,As
zcm,k,Be

ik·a2 − c†m,k,Bs
zcm−1,k,Be

ik·a2

+ c†m,k,Bs
zcm−1,k,Be

ik·0 − c†m,k,Bs
zcm,k,Be

ik·−a2 + c†m,k,Bs
zcm+1,k,Be

ik·−a2)

if m ± 1 exceed the region of the lattice number in a1 direction, that term should vanish in the above
equation. this is the way we choose open boundary condition to calculate the boundary modes.
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Figure 14: the open boundary of graphene

at last, we will consider the nearest neighbor Rashba term

HR = iλR

∑
<i,j>

c†i (s× d̂ij)zcj

in our notation of Fourier Transform along the a2 direction, this can be written as

HR = iλR

∑
k

∑
m

(c†m,k,Ae
−ik·δ3,2(−s× δ̂3)zcm,k,B + c†m,k,Ae

−ik·δ1,2(−s× δ̂1)zcm−1,k,B + c†m,k,Ae
−ik·δ2,2(−s× δ̂2)zcm,k,B)

+ iλR

∑
k

∑
(c†m,k,Be

ik·δ1(s× δ̂1)zcm+1,k,A + c†m,k,Be
ik·δ2(s× δ̂2)zcm,k,A + c†m,k,Be

ik·δ3(s× δ̂3)zcm,k,A)

sililarly, if m ± 1 exceed the region of the lattice number in a1 direction, which means that term should
vanish in the above equation. so if we use the basis

γk = (· · · , cm−1,k,A, cm−1,k,B, cm,k,A, cm,k,B, cm+1,k,A, cm+1,k,B, · · · )T

then the hamiltonian in the k diagonal block should be γ†
kHkγk and Mk is a 4NX4N metrics with N the

number of unite cells along a1 direction.
the onsite staggered potential terms will contribute to Hk a term with the following metrics

Hν,k = λνIN ⊗ σz

and the nearest hopping term will contribute to Hk a term with the following metrics multiply a
general parameter t1:

IN⊗

(
0 e−ik·δ2,2 + e−ik·δ3,2

eik·δ2,2 + eik·δ3,2 0

)
+IN,1⊗

(
0 0

eikδ1,2 0

)
+IN,−1⊗

(
0 e−ikδ1,2

0 0

)

and the next nearest SO hopping term contribute to Hk a term with the following metrics multiply
a general parameter λso

iIN ⊗

(
−eika2 + e−ika2 0

0 eika2 − e−ika2

)
⊗ sz

+ iIN,1 ⊗

(
1− e−ik·a2 0

0 −1 + e−ik·a2

)
⊗ sz

25 of 29



§4 QUANTUM SPIN HALL EFFECT IN GRAPHENE

+ iIN,−1 ⊗

(
eik·a2 − 1 0

0 −eik·a2 + 1

)
⊗ sz

Finally the nearest neighbor Rashba term will contribute to Hk a term with the following metrics
multiply a general parameterλR:

iIN ⊗

(
0 e−ikδ3,2(−s× δ3)z + e−ikδ2,2(−s× δ2)z

eikδ3,2(s× δ3)z + eikδ2,2(s× δ2)z 0

)

+ iIN,1 ⊗

(
0 0

eik·δ1,2(s× δ1)z

)
+ iIN,−1 ⊗

(
0 e−ik·δ1,2(−s× δ1)z

0 0

)

= iIN ⊗

(
0 −e−ikδ3,2

eikδ3,2 0

)
(s× δ3)z + iIN ⊗

(
0 −e−ikδ2,2

eikδ2,2 0

)
(s× δ2)z

+ iIN,1 ⊗

(
0 0

eik·δ1,2

)
(s× δ1)z + iIN,−1 ⊗

(
0 −e−ik·δ1,2

0 0

)
(s× δ1)z

since we know δ1 =
1
3
(2a1−a2) =

a
2
(1,−

√
3),δ2 = 1

3
(2a2−a1) =

a
2
(1,

√
3),δ3 = − 1

3
(a1+a2) =

a
2
(−2, 0)

and |a1| = |a2| =
√
3a,so we have (we set a = 1√

3
so that |a1| = |a2| = 1 in the following context)

eik·δ1,2 = eik(−
1
3 |a2|) = e−ik

√
3

3 a = e−ik 1
3

eik·δ2,2 = eik(
2
3 |a2|) = eik

2
√

3
3 a = eik

2
3

eik·δ3,2 = eik(−
1
3 |a2|) = e−ik

√
3

3 a = e−ik 1
3

eika2 = eik
√
3a = eik

and the values for (s× δi)z

(s× δ̂1)z = −
√
3

2
sx − 1

2
sy

(s× δ̂2)z =

√
3

2
sx − 1

2
sy

(s× δ̂3)z = sy

so finally the nearest neighbor Rashba term can be written as

= iIN ⊗

(
0 −e−ikδ3,2

eikδ3,2 0

)
sy + iIN ⊗

(
0 −e−ikδ2,2

eikδ2,2 0

)
(

√
3

2
sx − 1

2
sy)

+ iIN,1 ⊗

(
0 0

eik·δ1,2 0

)
(−

√
3

2
sx − 1

2
sy) + iIN,−1 ⊗

(
0 −e−ik·δ1,2

0 0

)
(−

√
3

2
sx − 1

2
sy)

= {
√
3

2
iIN ⊗

(
0 −e−ikδ2,2

eikδ2,2 0

)
−

√
3

2
iIN,1 ⊗

(
0 0

eik·δ1,2 0

)

−
√
3

2
iIN,−1 ⊗

(
0 −e−ik·δ1,2

0 0

)
}sx

+ {iIN ⊗

(
0 −e−ikδ3,2

eikδ3,2 0

)
− 1

2
iIN ⊗

(
0 −e−ikδ2,2

eikδ2,2 0

)
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− 1

2
iIN,1 ⊗

(
0 0

eik·δ1,2 0

)
− 1

2
iIN,−1 ⊗

(
0 −e−ik·δ1,2

0 0

)
}sy

in the end of the story, after collecting all the terms, the hamiltonian in diagonal k block with open
boundary conditions in the a1 direction consisting of the following terms

H = Hν +Ht +Hso +HR

wher Hν is the following metrics multiply a global parameter multiplier λν

IN ⊗ σz

wher Ht is the following metrics multiply a global parameter multiplier t1

IN⊗

(
0 e−ik·δ2,2 + e−ik·δ3,2

eik·δ2,2 + eik·δ3,2 0

)
+IN,1⊗

(
0 0

eikδ1,2 0

)
+IN,−1⊗

(
0 e−ikδ1,2

0 0

)

wher Hso is the following metrics multiply a global parameter multiplier λso

iIN ⊗

(
−eika2 + e−ika2 0

0 eika2 − e−ika2

)
⊗ sz

+ iIN,1 ⊗

(
1− e−ik·a2 0

0 −1 + e−ik·a2

)
⊗ sz

+ iIN,−1 ⊗

(
eik·a2 − 1 0

0 −eik·a2 + 1

)
⊗ sz

wher HR is the following metrics multiply a global parameter multiplier λR

{
√
3

2
iIN ⊗

(
0 −e−ikδ2,2

eikδ2,2 0

)
−

√
3

2
iIN,1 ⊗

(
0 0

eik·δ1,2 0

)

−
√
3

2
iIN,−1 ⊗

(
0 −e−ik·δ1,2

0 0

)
}sx

+ {iIN ⊗

(
0 −e−ikδ3,2

eikδ3,2 0

)
− 1

2
iIN ⊗

(
0 −e−ikδ2,2

eikδ2,2 0

)

− 1

2
iIN,1 ⊗

(
0 0

eik·δ1,2 0

)
− 1

2
iIN,−1 ⊗

(
0 −e−ik·δ1,2

0 0

)
}sy

§5 Kagome Lattice

another important lattice model constructed from the honeycomb lattice is the so called kagome
lattice, which holds flat band, Dirac cone and Van Hove singularity, in this section, we will demonstrate
these features.

the lattice configuration can be seen in Figure 15. it’s quite similar to graphene but in each unite
cell, there are three sites. Considering the nearest coupling, the hamiltonian in the kagome lattice can be
written as

H =
∑
<i,j>

ti,jc
†
icj
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a1

a2

Zigzag

Armchiar

Figure 15: Left: the graphene lattice, which can be seen as translation of the regular hexagon along the reflection
symmetry line passing the midpoint of each edge, in this kind of translation, the regular hexagon can fill up the whole
plane thus the lattice sites in each unite cell is two, labeled aa A and B in literature. Right: the kagome lattice, it
can be seen as translation of the regular hexagon along the reflection symmetry line passing the vertexes of the hexagon,
in this kind of translation, the regular hexagon can not fill up the whole plane, there are regular triangles in the unfilled
parts, so the unite cell must be larger than that in the graphene or equivalently, there are three sites in each unite cell
which is larger than that in graphene.

in the following, we consider the fully symmetric case, that is ti,j = t for all the bonds, we can write down
the Fourier transform of lattice model to the momentum space which is, in the spinor γk = (ck,1, ck,2, ck,3)

T ,
it read as

H(k) =


0 1 1

1 0 1

1 1 0



+ e−ik·a1


0 0 0

1 0 0

0 0 0

+ eik·a1


0 1 0

0 0 0

0 0 0



+ e−ik·a2


0 0 1

0 0 0

0 0 0

+ eik·a2


0 0 0

0 0 0

1 0 0



+ e−ik·(a2+a1)


0 0 0

0 0 1

0 0 0

+ eik·(a2+a1)


0 0 0

0 0 0

0 1 0



=


0 1 + eik·a1 1 + e−ik·a2

1 + e−ik·a1 0 1 + e−ik·(a1+a2)

1 + eik·a2 1 + eik·(a1+a2) 0



then we can derive the band of this hamiltonian

|H(k)− EI| = −E(E2 − (1 + eik·(a1+a2))(1 + e−ik·(a1+a2)))

− (1 + e−ik·a1)(−E(1 + eik·a1)− (1 + e−ik·a2)(1 + eik·(a1+a2)))
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+ (1 + eik·a2)((1 + eik·a1)(1 + e−ik·(a1+a2)) + E(1 + e−ik·a2))

= −E3 + E(2 + 2 cos(k · (a1 + a2)) + 2 + 2 cos(k · a1) + 2 + 2 cos(k · a2))

+ {(1 + eik·a2)(1 + eik·a1)(1 + e−ik·(a1+a2)) + c.c}

= −E3 + E(2 + 2 cos(k · (a1 + a2)) + 2 + 2 cos(k · a1) + 2 + 2 cos(k · a2))

+ {1 + eik·a1 + eik·a2 + eik·(a1+a2) + e−ik·(a1+a2) + e−ik·a1 + e−ik·a2 + 1 + c.c}

= −E3 + E(2 + 2 cos(k · (a1 + a2)) + 2 + 2 cos(k · a1) + 2 + 2 cos(k · a2))

+ 4(1 + cos(k · (a1 + a2)) + cos(k · a1) + cos(k · a2))

= 0

we can find that the solution to the above equation is

E1(k) = −2

which is independent of k.
and then dividing the above equation with (E + 2) we have

− E2 + 2E + (2 + 2 cos(k · (a1 + a2)) + 2 + 2 cos(k · a1) + 2 + 2 cos(k · a2))− 4 = 0

→ (E − 1)2 = 3 + 2 cos(k · (a1 + a2)) + 2 cos(k · a1) + 2 cos(k · a2)

thus we have
E±(k) = 1±

√
3 + 2 cos(k · (a1 + a2)) + 2 cos(k · a1) + 2 cos(k · a2)

since the unite cell is the sam as that of graphene except the volume, so we can directly use the results
from graphene and find that

2 cos(k · (a1 + a2)) + 2 cos(k · a1) + 2 cos(k · a2) = f(k) = 2 cos(
√
3aky) + 4 cos(3

2
akx) cos(

√
3

2
aky)

in conclusion, we have the band structure of the kagome lattice

E1(k) = −2t

E±(k) = t(1±
√
3 + f(k))
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