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§1 THE MECHANISM BEHIND THE FACE OF THE BOTT CLOCK[? ]

§1 The Mechanism behind the face of the Bott clock[1]

ℜ.1 the relax of the homotopy to the reduced K theory

In physics, we consider the hamiltonian of different real dimension, if we require the translation
symmetry, then we can transform the whole hamiltonian to the Fourier space and we have the BZ, in each
point k of the BZ, we have H(k), and the occupied states forms a vector principle bundle over BZ, the
topological classification of the quantum matter is thus reduced to the classification of such bundles.

this is achieved by the K theory. strictly speaking, we should classify such bundle under the language
of homotopy, but it’s much difficult and we can simplify it by relaxing the notion of equivalence. this is
achieved from the reduced K theory in mathematics point of view and inspired from the physics intuition.

for example, the physical system with only one occupied band with Chern number n is not equivalent
to the occupied n bands with each band Chern number equals to one, because the Fiber bundle in the
previous case is rank one but the Fiber bundle in the last case is rank n, they can not equivalent in the sense
of strictly homotopy. but these two system will give us the same topological quantum hall conductance
in physics view of point. if we can relax the equivalence to that bundles of different ranks are counted
as equivalent if we can deform them into each other after adding suitable trivial bundles. then they are
equivalent, because we can add n-1 trivial bundle to the previous one and deform this to the latter one.
and this kind of equivalence is called reduced K theory and such bundles over base space X is denoted as
K̃(X). the following classification is in the sense of K̃(X), namely under the extended equivalence.

As for the base space, in physics we consider the base space to be torus, which is much complex than
the sphere, in the strong topological sense(higher enough dimension), there is no difference but in the
weak topological case(low space dimension), this may be different, we consider the case X to be sphere.

ℜ.2 Bott periodic for the orthogonal group and unitary group∮
.1 Altland and Zirnbauer’s Approach for BdG Hamiltonian

discrete symmetries ȷ1, ȷ2 · · · , denoted by s, when considering N dimensional system, the correspond-
ing N dimensional representation of these symmetries are N by N complex metrics, J1, J2 · · · . we consider
the space of all N by N complex metrics representing the hamiltonian which has these symmetries(namely
all the complex metrics H satisfying [H, Ji] = 0), this space is donated as Hs, they find that for each given
class, Hs is a symmetric space

Hs = G/K

and the hamiltonian iH is the generator of this symmetric space. see Appendix for more details about the
symmetry space.

we now show thier approaches in the following in more details to get the idea behind the construction
of these symmetry space[2].

the hamiltonian of the system can be written as

Ĥ =
∑
α,β

(hα,βc
†
αcβ +

1

2
∆α,βc

†
αc

†
β +

1

2
∆∗

α,βcβcα)

hα,β = h∗
β,α since Ĥ should be hermitian. ∆α,β = −∆β,α since this system is fermion system:

h† = h ∆ = −∆T
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§1 THE MECHANISM BEHIND THE FACE OF THE BOTT CLOCK[? ]

we can write this hamiltonian in the BdG form with the particle-hole symmetry:

Ĥ =
1

2
(c†, c)

(
h ∆

−∆∗ −hT

)(
c

c†

)
+ constant

so we can assign every hamiltonian the following metrics

H =

(
h ∆

−∆∗ −hT

)

where h is the part acting on the particle space(the state satisfying c†|p⟩ = 0), and −hT is the part acting
on the hole space( the state satisfying c|h⟩ = 0). we thus introduce a particle-hole symmetry of this
system, which is represented by P := Σx := σx ⊗ I2N with σx act on the particle-hole space. with 2N the
total dimension of h, namely the range of index α, since there are N sites and there is spin in each site.
then we consider different symmetry constrains on this metrics.

Symmetry class D

since H is hermitian, which is not closed under the Lie bracket(so, it can not be the lie algebra of
some metrics groups), since

[A,B]† = B†A† −A†B† = [B,A] = −[A,B]

so we instead consider the X := iH, which is anti-hermitian, and closed under the Lie bracket. then the
constrain on the X can be summarized as

−X† = X = −ΣxX
TΣx

then such bunches of X are closed under the Lie bracket. which is isomorphic to some Lie algebra of some
Lie group.In order to identify this algebra in the standard form , we can make a unitary conjugation of X
by

−UX†U−1 = UXU−1 = −UΣxX
TΣxU

−1 = −UΣxU
T (UXU−1)TU−1,TΣxU

−1

with the further requirement U−1,† = U , UΣxU
T = I so as to simplify the relation. since Σx = σx ⊗ I2N ,

so we can write U as
(

a b

c d

)
⊗ I2N and since then

(
a b

c d

)(
0 1

1 0

)(
a c

b d

)
=

(
2ab ad+ bc

bc+ ad 2cd

)
= I → ab = cd =

1

2
ad+bc = 0

(
a b

c d

)(
a∗ c∗

b∗ d∗

)
= I → aa∗ + bb∗ = cc∗ + dd∗ = 1 ac∗ + bd∗ = 0

from ab = cd = 1
2

and aa∗ + bb∗ = cc∗ + dd∗ = 1we have the relation that

aa∗ = bb∗ = cc∗ = dd∗ =
1

2
→ U =

1√
2

(
eiϕ1 e−iϕ1

eiϕ3 e−iϕ3

)

further from ad+ bc = 0 and ac∗ + bd∗ = 0, we have

Re(ei(ϕ1−ϕ3)) = 0 → ϕ1 − ϕ3 = ±π

2

2 of 39



§1 THE MECHANISM BEHIND THE FACE OF THE BOTT CLOCK[? ]

and we can choose that ϕ1 = 0 and ϕ3 =
π
2

and we have

X → X̃ = U0XU−1
0 U0 =

1√
2

(
1 1

i −i

)
⊗ I2N

then the constrain becomes
−X̃† = X̃ = −X̃T

this means that X̃ is real and anti-symmetric 4N×4N metrics, so it’s an element of so(4N). the symmetry
space for this case is just

SD = SO(4N)

from the Cartan’s maximal torus theorem, we know that X can be diagonalized by the Lie group element
g,namely

gXg−1 = Ω = σz ⊗ iω

which is diagonal, and g is the Lie group element defined by(which is isomorphic to SO(4N))

g−1,† = g = Σxg
−1,TΣx

then, the hamiltonian can be written as

Ĥ =
1

2

∑
λ

ωλ(γ
†
λγλ − γλγ

†
λ)

we have the particle-hole operator acting on the hamiltonian as

P (H) = UPH
∗U−1

P = −H → UPH
TU−1

P = −H

so we have in terms of X=iH

UP iH
TU−1

P = −iH → X = −UPX
TU−1

P

so in this case , the particle hole operator is just P = ΣxK and since then, we have

P = ΣxK → P 2 = ΣxΣ
∗
x = Σ2

x = +1

which is the same as the general definition of symmetry class D.

Symmetry class C

if we further require the system to be spin-rotation invariant, then we can derive this symmetry class.
we write the particle-hole decomposition of X as

X =

(
A B

C D

)
X = Epp ⊗A+ Eph ⊗B + Ehp ⊗ C + Ehh ⊗D

then the constrain inherited from the −X† = X = −ΣxX
TΣx is that

−A† = A C = −B† B = −BT C = −CT D = −AT

and then the generators of the spin rotations, are represented in this particle-hole space by

Jk = (Epp ⊗ σk − Ehh ⊗ σT
k )⊗ 1N
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§1 THE MECHANISM BEHIND THE FACE OF THE BOTT CLOCK[? ]

since these three generators form the Lie algebra of su(2). then spin rotation invariant requires that

[X, Jk] = 0 →

(
A B

C D

)(
σk ⊗ IN 0

0 −σT
k ⊗ IN

)
=

(
σk ⊗ IN 0

0 −σT
k ⊗ IN

)(
A B

C D

)

so we have

[A, σk ⊗ IN ] = 0 [D,σT
k ⊗ IN ] = 0 −BσT

k ⊗ IN = σk ⊗ INB Cσk ⊗ IN = −σT
k ⊗ INC

since −A† = A we can write A as (λiσi)⊗ a, with λi be real number, so as that this constrain means that
−a† = a.

besides [A, σk ⊗ IN ] = 0 → [(λiσi), σk] = 0 → λ1 = λ2 = λ3 = 0, which means that

A = λ1I ⊗ a = I ⊗ (λ1a) := I ⊗ a

by means of redefine a. and D = −AT = I ⊗−aT

since σT
x = σx, σ

T
y = −σy, σ

T
z = σz, so if we write B as (λiσi)⊗ b, then λiσi should commute with σy

and anti-commute with σx, σz which means that λiσi = λ2σy, thus B = λ2σy ⊗ b := σy ⊗ b, the constrain
BT = −B implies b = +bT and we have C = −B† = σy ⊗−b†. so the metrics has the following form

X =


a 0 0 −ib

0 a ib 0

0 ib† −aT 0

−ib† 0 0 −aT

 (1)

if we absorb the complex unit i into the metrics b and define b̃ = −ib, then the constrain on b̃ is also
b̃T = b and we have

X =


a 0 0 b̃

0 a −b̃ 0

0 b̃† −aT 0

−b̃† 0 0 −aT

 =


a 0 0 b̃

0 a −b̃ 0

0 −c −aT 0

c 0 0 −aT


where we have define c = −b̃†, we can find that in this case, the hamiltonian reduced to two commuting
part, which is isomorphic, namely,( we write b̃ as b)

X =

(
a b

c −aT

)
⊕

(
a −b

−c −aT

)

so we can just consider one block, we consider the first block, which consists of spin-up particle and
spin-down holes, we write it as

X↑ =

(
a b

c −aT

)
constrains are

−a† = a bT = b c = −b†

which give constrain on the block as

−X†
↑ = X↑ = −ΣyX

T
↑ Σy Σy = σy ⊗ IN
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§1 THE MECHANISM BEHIND THE FACE OF THE BOTT CLOCK[? ]

since the lie algebra elements of Sp(2N) = U(2N) ∩ Sp(2N, C) satisfying

−X† = X = JXTJ J2 = −1

then we can find that iΣy = iσy ⊗ IN serve as the role of the standard J. which means that X↑ is the
element of sp(2N). so the symmetry space in this class is

SC = Sp(2N) (2)

in this case, the reduced particle-hole operator in the half block space is

P = ΣyK → P 2 = ΣyΣ
∗
y = −Σ2

y = −1

which is the sam as the general definition. we should further notice that from calls D, we add a spin-
rotation symmetry, then the whole space reduced to two commuting and isomorphic block, then on just
one block, the effective particle hole operator has the property of the class C. in this formalism, we derive
symmetry class C from symmetry class D.

Symmetry class DIII

in this case, we should consider the time-reversal symmetry, since T act in H as

T (H) = UTH
∗U−1

T = H → UTH
TU−1

T = H

we in terms of X=iH, it should be

UT iH
TU−1

T = iH → UTX
TU−1

T = X

so with further, time reversal symmetry, we have UT := τ = I2 ⊗ iσy ⊗ IN , where the tensor product act
on PH-Spin-Sites space.

−X† = X = −ΣxX
TΣx = τXT τ−1

since the set satisfying the relation X = τXT τ−1 is not closed under Lie bracket due to the simple fact
that

[X,Y ] = τXT τ−1τY T τ − τY T τ−1τXT τ = −τ [X,Y ]T τ

but we know τ2 = ±1, so τ is order two automorphism, so we can separate the space into the +1 eigenvalue
space and -1 eigenvalue space , namely,

X = X+ ⊕X− X+ = τXT
+τ

−1 X− = −τXT
−τ

−1

and the vectors with the latter property is closed under the Lie bracket

[X−, Y−] = τXT
−τ

−1τY T
− τ − τY T

− τ−1τXT
−τ = −τ [X−, Y−]

T τ

so these vector forms a Lie algebra of some Lie group, we denoted it as the space K, with the following
constrains

−X† = X = −ΣxX
TΣx = −τXT τ−1

since the space of the following constrain is so(4N),

−X† = X = −ΣxX
TΣx
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§1 THE MECHANISM BEHIND THE FACE OF THE BOTT CLOCK[? ]

the desired space with time reversal symmetry, denoted as P, with elements X satisfying

−X† = X = −ΣxX
TΣx = τXT τ−1

is the complement of K over so(4N), namely

so(4N) = P ⊕K

so we only need to identify the Lie algebra K,the equations define this space is

−X† = X = −ΣxX
TΣx = −τXT τ−1

since we can use time reversal and particle hole symmetry to form a unitary transformation, we can modify
this by noting that

XT = −τ−1Xτ = −τXτ−1 → −X† = X = −ΣxX
TΣx = ΣxτX(Σxτ)

−1

we can make a unitary transformation to simplify the last relation

−U−1X†U = U−1XU = −U−1ΣxU
T,−1UTXTU−1,TUTΣxU = U−1(Σxτ)UU−1XUU−1(Σxτ)

−1U

by require that U−1 = U †,U−1ΣxU
−1,T = eiθΣx„ U−1(Σxτ)U = eiϕΣz then the X̃ = U−1XU satisfying

−X̃† = X̃ = −ΣxX̃
TΣx = ΣzX̃Σz

where Σx = σx ⊗ I2 ⊗ IN ,Σz = σz ⊗ I2 ⊗ IN . in oder to establish this , the constrain on U is(we can write
U as A⊗B ⊗ IN )

U−1 = U †

Σx = eiθUΣxU
T

(Σxτ)U = eiϕUΣz

if we write U =

(
A B

C D

)
, then (Σxτ)U = eiϕUΣz implies that

iσyC = eiϕA iσyD = −eiϕB iσyA = eiϕC iσyB = −eiϕD

this implies that −e2iϕ = 1 so eiϕ = i and we have

C = σyA D = −σyB

then Σx = eiθUΣxU
T implies that

ABT +BAT = 0 CDT +DCT = 0 ADT +BCT = eiθ

inserting into C and D by A and B, we have

ABT +BAT = 0 ABT −BAT = eiθσy → ABT =
1

2
eiθσy

from U−1 = U †, we have
AA† +BB† = I AC† +BD† = 0
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§1 THE MECHANISM BEHIND THE FACE OF THE BOTT CLOCK[? ]

also by inserting C and D by A and B, we have

AA† +BB† = I AA† −BB† = 0 → AA† = BB† =
1

2

then we have BT = eiθA†σy → B = −eiθσyA
∗, these are all constrains, so we can choose A = 1√

2
I and

−eiθ = i, then A=I and B = 1√
2
iσy, then U read as

U =
1√
2

(
I2 iσy

σy −iI2

)
⊗ IN

so in conclusion, under the U conjugation, we have the equations for the elements in K

−X̃† = X̃ = −ΣxX̃
TΣx = ΣzX̃Σz

if we write X̃ =

(
A B

C D

)
, this just means that

−

(
A† C†

B† D†

)
=

(
A B

C D

)
= −

(
DT BT

CT AT

)
=

(
A −B

−C D

)

this means that B=C=0 and D = −AT and −A† = A

X̃ =

(
A 0

0 −AT

)

then it’s obviously that this metrics consists of two isomorphic commuting block, and each block is
determined by an anti-hermitian metrics of dimension 2N. so this Lie algebra is isomorphic to u(2N),
which mean that K = u(2N). and we have the symmetry space for this class DIII is just the space

SDIII = SO(4N)/U(2N) (3)

we can see that P 2 = +1 as before and T 2 = iσyKiσyK = (iσy)
2 = −1, which is the same as that in the

general case.

Symmetry class CI

in this case, we proceed as adding time reversal symmetry to the spin rotation invariant system.since
after considering the spin rotation invariant, the whole system reduced to two isomorphic sectors and in
each sector , the Particle hole symmetry satisfying(P 2 = −1)

−X†
↑ = X↑ = −ΣyX

T
↑ Σy

time reversal symmetry acting on the spin- space, and under this one sector X↑, it should be act as the
identity effectively, so the constrain after considering time reversal symmetry, the whole requirement is
that

−Y † = Y = −ΣyY Σy = Y T

we donate the space of metrics satisfying above as P, due to the same reason that P is not closed under
the Lie bracket,

[X,Y ]T = Y TXT −XTY T = −[X,Y ] ̸= [X,Y ]
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§1 THE MECHANISM BEHIND THE FACE OF THE BOTT CLOCK[? ]

so it can not be the Lie algebra of some Lie group, instead, we consider it’s complement on the Lie algebra
of sp(2N) which we identified before:

−Y † = Y = −ΣyY Σy

since time reversal is oder 2, the complement should be the space with the -1 eigen-value, namely, the
elements in space K satisfying

−Y † = Y = −ΣyY Σy = −Y T

similarly, we then try to identify this Lie algebra K.
from −ΣyY Σy = −Y T , we know that it should be commute with Σy, so it can be written as

Y = I2 ⊗A+ σy ⊗B

−Y † = Y requires that A† = −A,B† = −B,Y = −Y T require that A = −AT , B = BT , so have that A is
real and anti-symmetric but B is purely imaginary B = iC with C symmetric

Y = I2 ⊗A+ σy ⊗B = Y = I2 ⊗A+ iσy ⊗ C

since an anti-hermitian metrics X satisfying that it’s real part is real anti-symmetric and it’s imaginary
part is real symmetric, so we have

Y = I2 ⊗ Re(X) + iσy ⊗ Im(X)

with X anti-hermitian (N ×N) metrics, so we find that Y is isomorphic to anti-hermitian metrics space
by identify the new complex unit as iσy.

this shows that K = u(N). so the system with both time reversal symmetry and spin rotation
symmetry is P satisfying:

sp(2N) = P ⊕ u(N)

so the symmetry space in this case is just

SCI = Sp(2N)/U(N) (4)

and we have the effective P 2 = −1 and T 2 = +1 in the spin up sector X↑, which is the symmetry class
define the class CI in general case.

∮
.2 Symmetry space construction from the extension of Clifford Algebra

Why Clifford Algebra : The general idea and arguments on symmetry operators

For the real case, if there is no extra symmetry, we can start from a continuous space O(16r), we
begin from this since it’s the biggest space with real entries. because the we regard the hamiltonian as
the generator of the Lie groups, so the hermitian naturally requires that X = iH is anti-hermitian, which
can be regarded as the Lie algebra of O(16r).

then we add symmetry constrain on the hamiltonian, in the lie algebra level, it should be some metrics
Ji represent the symmetry, satisfying

X = ∓JXTJ = ±JXJ J2 = ±1
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§1 THE MECHANISM BEHIND THE FACE OF THE BOTT CLOCK[? ]

since XT = −X, and the + sign in the first place represent the time reversal symmetry, - sign represent
the particle hole symmetry. in the Lie group level, this relation should be the constrain on the metrics in
O(16r) satisfying

OTJO = J → X = JXJ if J2 = +1 OTJO = J → X = −JXJ if J2 = −1

in the following, we consider the case J2 = −1 at first, then the symmetry constrain on Lie algebra level
is

X = −JXJ → [J,X] = 0

since J2 = −1, the subset satisfying the above relation is closed under the Lie bracket, which means that
the constrain on the Lie group level

OTJO = J

will give us a new Lie group out of the previous one after we add a new symmetry. suppose after adding
a J1 symmetry, we derive a new Lie group G1 by the previous argument. then we want to add a new
symmetry J2, there are two kinds of choice since J1 is an order two mapping, namely, J2 lie in the +1
eigen-space or -1 eigen-space of J1

J2 = ±J1J2J1

since J2 =
1
2
(J2 + J1J2J1) +

1
2
(J2 − J1J2J2) and

1

2
(J2 + J1J2J1) = J1

1

2
(J2 + J1J2J1)J1

1

2
(J2 − J1J2J1) = −J1

1

2
(J2 − J1J2J1)J1

if we choose J2 satisfying J2 = −J1J2J1, which means that J2 lie in the Lie algebra of G1, J2 ∈ Lie(G1),
which may not be in a symmetry space. we want to consider the case that the choice of J2 Lies in a
symmetry space, so we consider the case that

J2 = +J1J2J1 → J1J2 = J2
1J2J1 = −J2J1 → {J1, J2} = 0

then the J2 lies in the Lie algebra of G/G1, which is a symmetry space, and this process is just the
consideration of the Clifford Algebra extension from Cln,0 to Cln+1,0, from this extension process, we can
derive the symmetry space, and consequently, the symmetry class!!!

in conclusion, we at first consider a set of symmetry operators being the basis of the Clifford Algebra,
namely

{Ji, Jj} = −2δi,jI

The symmetry space sequence from the extension of Clifford Algebra

1. with the above argument in mind, we consider what we derive after we add a single J1.we can choose
J1 = iσy ⊗ I8r, then the constrain on O(16r) in the Lie group level read as

OTJ1O = J1

if we write O = A ⊗ B, this means that AT ⊗ BT (iσy ⊗ I8r)A ⊗ B = iσy ⊗ I8r, since OTO = I, we
have

(iσy ⊗ I8r)A⊗B = A⊗B(iσy ⊗ I8r)

so we have [iσy, A] = 0, which means that the real metrics A should be the form λ1I + λ2iσy. so the
group G1 after adding J1 is the elements of O(16r) with the following form

(λ1I + λ2iσy)⊗B BTB = I (λ1I + λ2iσy)
T (λ1I + λ2iσy) = λ2

1 + λ2
2 = 1
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§1 THE MECHANISM BEHIND THE FACE OF THE BOTT CLOCK[? ]

so we can regard iσy as the new complex unit in this space since it commutes with the elements
of G1 and square to -1, so (λ1I + λ2iσy) is isomorphic to the new complex number , since then
(λ1I+λ2iσy)⊗B means the complexity of the real orthogonal metrics B, which we derive the U(8r)

group, so we derived that G1 = U(8r),mathmaticallly

U(8r) ∼= O(16r) ∩ Sp(16r,R)

2. what happens if we add a new symmetry J2, since J2
2 = −1 and it anti-commute with J1, we can

write it as
J2 = σz ⊗ iσy ⊗ I4r

from the above argument, we can write the elements in G1 as (λ1I + λ2iσy)⊗B1 ⊗ C

J2O = OJ2 → (λ1I + λ2iσy)⊗B1 ⊗ Cσz ⊗ iσy ⊗ I4r = σz ⊗ iσy ⊗ I4r(λ1I + λ2iσy)⊗B1 ⊗ C

which means that
(λ1I + λ2iσy)σz ⊗B1iσy = σz(λ1I + λ2iσy)⊗ iσyB1

the solutions are
λ1 = 0 B1 = µ1σx + µ2σz

λ2 = 0 B1 = µ1I + µ2iσy

so we have the (λ1I+λ2iσy)⊗B1 = λ2iσy⊗(µ1σx+µ2σz) or (λ1I+λ2iσy)⊗B1 = λ1I⊗(µ1I+µ2iσy),
in general, we can write it as their combinnation:

(λ1I + λ2iσy)⊗B1 = aI ⊗ I + bI ⊗ iσy + ciσy ⊗ σx + diσy ⊗ σz

since the basis
I ⊗ I, I ⊗ iσy, iσy ⊗ σx, iσy ⊗ σz

form the basis of the quaternion, because the latter three squares to -1 and follow the algebra of
ij = k = −ji etc. so the elements of (λ1I + λ2iσy) ⊗ B1 ⊗ C is just the quaternization of the real
orthogonal metrics C, and from OTO = I, it should be the elements of U(4r,H), where H represent
the quaternion numbers. mathematically:

G2 = U(8r) ∩ Sp(8r, C) := Sp(4r) ∼= U(4r,H)

3. what happens if we add a new J3, there are different cases, which resembles the different cases of
the metrics K = J1J2J3, since K commute with J1, J2 and squares to +1. So, it can be diagonalized
within the real metrics due to the fact that it’s eigenvalue is either +1 or -1 which is real. the
elements in G3 must satisfying

OTKO = OTJ1OOTJ2OOTJ3O = J1J2J3 = K → [K,O] = 0

so we can use the basis where K is diagonal, namely, the vector space V± which correspond to the ±
eigen-space of K. then O must be block diagonal since [K,O] = 0, it can not change the eigen-space
from V+ to V−. then J1, J2 in each eigen-space give us a quaterinion structure by requiring that

[O, J1] = [O, J2] = 0

10 of 39



§1 THE MECHANISM BEHIND THE FACE OF THE BOTT CLOCK[? ]

so, the group which commutes with J1, J2, J3, which is the same as the group which commutes with
J1, J2,K should be the group

G3 = Sp(n1)× Sp(n2) n1 + n2 = 4r

in the following, we use the explicit form of J3 to give us the concrete example of this directly. since
J1 = iσy ⊗ I2 ⊗ I2 ⊗ I2, J2 = σz ⊗ (iσy)⊗ I2 ⊗ I2.

so one choice of J3 is J3 = σx ⊗ iσy ⊗ I2 ⊗ I2. since the elements of the form aI ⊗ I + bI ⊗ iσy +

ciσy ⊗ σx + diσy ⊗ σz ⊗B ⊗ C is already commute with J3, since

[I ⊗ I, σx ⊗ iσy] = 0 [I ⊗ iσy, σx ⊗ iσy] = 0 [iσy ⊗ σx, σx ⊗ iσy] = 0 [σy ⊗ σz, σx ⊗ iσy] = 0

so in this case, the group G3 is the same as the group G2 = Sp(4r), this is the fact that

K = J1J2J3 = iσyσzσx ⊗ (iσy)
2 = I ⊗ I

only has +1 eigen-space and so that n1 = 4r and n2 = 0, so that

G3 = Sp(n1)× Sp(n2) = Sp(4r)× Sp(0) ∼= Sp(4r)

another choice of J3 is that J3 = σx ⊗ iσy ⊗ σz ⊗ I2. then we can write the elements which commute
with J1, J2 as aI ⊗ I + bI ⊗ iσy + ciσy ⊗ σx + diσy ⊗ σz ⊗ B ⊗ C, the further requirement that it
commute with J3 is that

((aI ⊗ I + bI ⊗ iσy + ciσy ⊗ σx + diσy ⊗ σz)⊗B ⊗ C)(σx ⊗ iσy ⊗ σz ⊗ I2)

=(σx ⊗ iσy ⊗ σz ⊗ I2)((aI ⊗ I + bI ⊗ iσy + ciσy ⊗ σx + diσy ⊗ σz)⊗B ⊗ C)

which means that

(aσx ⊗ iσy − bσx ⊗ I − cσz ⊗ σz + dσz ⊗ σx)⊗Bσz

= (aσx ⊗ iσy − bσx ⊗ I − cσz ⊗ σz + dσz ⊗ σx)⊗ σzB

which mens that B is commute with σz,so B = λ1I + λ2σz = diag{µ1, µ2} so we have (aI ⊗ I + bI ⊗
iσy + ciσy ⊗σx + diσy ⊗σz)⊗B⊗C can be written as two diagonal block with respect to B, in each
block, it’s a group isomorphic to Sp(2r) since it’s a quaternion over a real orthogonal metrics C.

so we have
G3 = Sp(2r)× Sp(2r)

in this case, K = J1J2J3 = iσyσzσx ⊗ (iσy)
2 ⊗ σz = I ⊗ I ⊗ σz which has equal number of ±

eigen-values, so that n1 = n2 = 2r

G3 = Sp(n1)× Sp(n2) = Sp(2r)× Sp(2r)

in the last, let’s consider the case where K is not diagonal, namely, consider the case J3 = σz ⊗ σz ⊗
(iσy)⊗ I2 then K is

K = iσyσzσz ⊗ (iσyσz)⊗ iσy = −iσy ⊗ σx ⊗ iσy

similarly, we have

((aI ⊗ I + bI ⊗ iσy + ciσy ⊗ σx + diσy ⊗ σz)⊗B ⊗ C)(σz ⊗ σz ⊗ (iσy)⊗ I2)
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=(σz ⊗ σz ⊗ (iσy)⊗ I2)((aI ⊗ I + bI ⊗ iσy + ciσy ⊗ σx + diσy ⊗ σz)⊗B ⊗ C)

which means that

(aσz ⊗ σz − bσz ⊗ σx + cσx ⊗ iσy − dσx ⊗ I)⊗Biσy

= (aσz ⊗ σz + bσz ⊗ σx + cσx ⊗ iσy + dσx ⊗ I)⊗ iσyB

the solution is that
a = c = 0 B = µ1σx + µ2σz

b = d = 0 B = λ1I + λ2iσy

which mean that it belongs to

(bI ⊗ iσy + diσy ⊗ σz)⊗ (µ1σx + µ2σz) + (aI ⊗ I + ciσy ⊗ σx)⊗ (λ1I + λ2iσy)

so the it’s an linear expansion of the following eight basis

I ⊗ iσy ⊗ σx I ⊗ iσy ⊗ σz iσy ⊗ σz ⊗ σx iσy ⊗ σz ⊗ σz

I ⊗ I ⊗ I I ⊗ I ⊗ iσy iσy ⊗ σx ⊗ I iσy ⊗ σx ⊗ iσy

there are two elements which square to +1, namely I ⊗ I ⊗ I, iσy ⊗ σx ⊗ iσy, this two also commute
with all the others.the remaining six are square to −1

in order to find the two quaternion structure, we label 1 = I ⊗ I ⊗ I, e = iσy ⊗ σx ⊗ iσy, and
i = I ⊗ I ⊗ iσy, j = I ⊗ iσy ⊗ σx, and k = ij = I ⊗ iσy ⊗ σz, then we have

iσy ⊗ σz ⊗ σx = e× (I ⊗−iσy ⊗−σz) = ek

iσy ⊗ σz ⊗ σz = e× (I ⊗−iσy ⊗ σx) = −ej

iσy ⊗ σz ⊗ I = e× (I ⊗ I ⊗−iσy) = −ei

then the above eight basis can be written as

j k ek − ej

1 i − ei e

so we can use the following to be the new basis

1

2
(1 + e)

1

2
(1 + e)i

1

2
(1 + e)j

1

2
(1 + e)k

1

2
(1− e)

1

2
(1− e)i

1

2
(1− e)j

1

2
(1− e)k

we choose this basis for the reason that it’s easy to show that the above line commutes with the
latter line since

(1 + e)(1− e) = 1− e2 = I − I = 0

in the basis where K is diagonal, we have e = −K which is diagonal with diagonal elements either
1 or -1, so 1

2
(1 + e) and 1

2
(1 − e) just means the projection to the +1 and -1 eigen-space, so they

should commute from this kind of view.besides 1
2
(1 + e) and 1

2
(1 − e) are constant metrics, so we

can easily see that expansion of these basis are isomorphic to the quaternions number. since the are
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commuting, so this group tensor product with C are isomorphic to Sp(2r) × Sp(2r) if we further
consider the orthogonal condition and that C is two dimensional orthogonal metrics.

. in order to add more such Ji and proceed advance, we choose the case that n1 = n2, so the Lie
group G3 is

G3 = Sp(2r)× Sp(2r)

and for simplicity, we choose the J3 to be J3 = σx ⊗ iσy ⊗ σz ⊗ I2 so as K = I ⊗ I ⊗ σz ⊗ I2 to be
diagonal, and the elements of G3 be of the form

(aI ⊗ I + bI ⊗ iσy + ciσy ⊗ σx + diσy ⊗ σz)⊗ diag{µ1, µ2} ⊗ C

together with the condition that it’s orthogonal. if we write h = aI⊗I+bI⊗iσy+ciσy⊗σx+diσy⊗σz,
d = diag{µ1, µ2}

4. To advance further, if we add a J4, we can consider that L = J3J4, which commute with J1, J2 and
anti-commute with K = J1J2J3 since

LK +KL = J1J2J3J3J4 + J3J4J1J2J3 = −J1J2J4 + J1J2J4 = 0

L2 = −1, then suppose v+ is a vector with +1 eigen-value for K, then KLv+ = −LKv+ = −Lv+,
which means that L transfer the V+ to V−, since the orthogonal metrics commuting with J1, J2, J3

is block diagonal in the basis V+ ⊕ V−, then when further commuting with J4, which is the same
as L, which should be the form of σx or iσy in this basis if we properly organize this basis, so we
have(L2 = −1 and we choose the standard form of L = iσy)

L

(
H1 0

0 H2

)
L =

(
−H2 0

0 −H1

)
= −

(
H1 0

0 H2

)
so H1 should be the same as H2. the the group surviving should be the diagonal elements of G3,
namely G4 = Sp(2r)× I ∼= Sp(2r).

more pratically, if we choose J4 = σx ⊗ iσy ⊗ (−σx)⊗ I2, Thus

L = (σx ⊗ (iσy)⊗ σz ⊗ I2)(σx ⊗ iσy ⊗ (−σx)⊗ I2) = I ⊗ I ⊗ iσy

the elements of G3 commute with this J4, requires that

((aI ⊗ I + bI ⊗ iσy + ciσy ⊗ σx + diσy ⊗ σz)⊗ diag{µ1, µ2} ⊗ C)(σx ⊗ iσy ⊗−σx ⊗ I2)

=(σx ⊗ iσy ⊗−σx ⊗ I2)((aI ⊗ I + bI ⊗ iσy + ciσy ⊗ σx + diσy ⊗ σz)⊗ diag{µ1, µ2} ⊗ C)

which means that

(aσx ⊗ iσy − bσx ⊗ I − cσz ⊗ σz + dσz ⊗ σx)⊗ diag{µ1, µ2}σx

= (aσx ⊗ iσy − bσx ⊗ I − cσz ⊗ σz + dσz ⊗ σx)⊗ σxdiag{µ1, µ2}

so we must have σx commute with diag{µ1, µ2}, which can happen when µ1 = µ2, so diag{µ1, µ2} =

µI which is diagonal, then the elements of the form

((aI ⊗ I + bI ⊗ iσy + ciσy ⊗ σx + diσy ⊗ σz)⊗ µI ⊗ C)

consisting the group Sp(2r) when consider that it’s orthogonal.

finally, we have G4 = Sp(2r), anyway.
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5. if we further add an extra J5, we can consider M = J1J4J5, which is commute with K = J1J2J3 and
squares to +1. so it can not mix the eigen space of K, namely V+ and V−, since M so we can choose
the basis in V+ and V− in which M is aslo diagonal.

V+ = V++ ⊕ V+− V− = V−+ ⊕ V−−

where the second sign label the eigen value of M which should be +1 or -1

since J2M = −MJ2, J1M = MJ1, so we must have J2V±,+ = V±,−, with this in mind the extra J5

makes the the quaternions (aI⊗I+bI⊗ iσy+ciσy⊗σx+diσy⊗σz) into two diagonal part according
to the eigen-value of M, and they are related by J2, this is equivalent to remove a complex structure
from the quaternions, so G5 is isomorphic to U(2r)

more practically, if we choose J5 = σz ⊗ σx ⊗ iσy ⊗ I2, then the extra constrain that OJ5 = J5O

should be the constrain that

[aI ⊗ I + bI ⊗ iσy + ciσy ⊗ σx + diσy ⊗ σz, σz ⊗ σx] = 0

which means that b=c=0, so the elements is of the form

(aI ⊗ I + diσy ⊗ σz)⊗ µI ⊗ C

consisting the the group U(2r) if we use the complex unit as iσy ⊗ σz and after considering the
orthogonal constrain.

in conclusion, we have
G5 = U(2r)

6. if we add an extra J6, we can consider N = J2J4J6, which commute with K and M and squares to
+1, so it act within V±,±, then we can choose the basis again which N is also diagonal, so the space
can be divided into

V±,± = V±,±,+ ⊕ V±,±,−

where the last sign represent the eigen-value of N. since J1N = −NJ1, so each space is related by
J1, namely, J1V±,±,+ = V±,±,−, since then, this is equivalent to remove a complex structure in G5,
which makes G6 isomorphic to O(2r)

more practically, if we choose J6 = σx⊗ I⊗ iσy ⊗ I2, then N = J2J4J6 = σz ⊗ I⊗σz ⊗ I2 is diagonal.

then the extra constrain is

[(aI ⊗ I + diσy ⊗ σz)⊗ µI ⊗ C, σx ⊗ I ⊗ iσy ⊗ I2] = 0

thus we have d=0, so the form of the elements in G6 is

(aI ⊗ I)⊗ µI ⊗ C

which is isomorphic to O(2r) when consider the orthogonal constrain. thus resulting in

G6 = O(2r)
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7. if we further add a J7, we can consider P = J1J6J7, we have

[P,K] = 0, [P,M ] = 0, [P,N ] = 0

and P squares to 1, so we can choose the basis where P is again diagonal, then

V±,±,± = V±,±,±,+ ⊕ V±,±,±,−

where the last sign represent the eigen-value of P. Thus the extra constrain will put G6 into two
diagonal part, so we have

G7 = O(n1)×O(n2) n1 + n2 = 2r

more practically, if we choose J7 = σz ⊗ σz ⊗ iσy ⊗ I2, then this will give us no more constrain, so
G7 = G6 = O(2r), this is due to the fact that

N = J1J6J7 = −I ⊗ I ⊗ I ⊗ I

only has eigen-value with -1, so n1 = 0, n2 = 2r, which makes that

G7 = O(0)×O(2r) ∼= O(2r)

another choice is J7 = σz ⊗ σz ⊗ iσy ⊗ σz, then the extra constrain is that C = A ⊗D, where D is
metrics in r dimesion and A is 2 dimension.

[A, σz] = 0

which means that A = λ1I + λ2σz = diag{a, b}, then the elements of the form

diag{a, b} ⊗D

is isomorphic to the group O(r)×O(r). in this case, we have

N = J1J6J7 = −I ⊗ I ⊗ I ⊗ σz

which has the same number of +1,−1 eigen-value, so n1 = n2 = r

G7 = O(n1)×O(n2) = O(r)×O(r)

in oder to make the whole process keeping advance, we choose this one.

8. finally, if we add an extra J8, we can consider Q = J7J8, which commute with K,M,N and anti-
commute with P, so it maps V±,±,±,+ to V±,±,±,−, this means that only the diagonal entry in G7 can
survive, namely, G8 = O(r).

more practicaly, if we choose J8 = σz ⊗ σz ⊗ iσy ⊗ σx, then the extra constrain is

[diag{a, b}, σx] = 0

so we must have a=b, then the elements of the following form

aI ⊗D

is isomorphic to O(r) when considering the orthogonal constrain. what happens if we add more Ji,
since Clk+8,0

∼= M(16) ⊗ Clk,0. so the extra constrain will be like just an Ji adding to O(r), which
will comes to a second cycle as above.
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in conclusion, we have

· · ·O(16r)
J1⊃ U(8r)

J2⊃ Sp(4r)
J3⊃ Sp(2r)× Sp(2r)

J4⊃ Sp(2r)

J5⊃ U(2r)
J6⊃ O(2r)

J7⊃ O(r)×O(r)
J8⊃ O(r) · · · (5)

and one kind choice of such symmetry breaking operators is

J1 = iσy ⊗ I2 ⊗ I2 ⊗ I2 ⊗ Ir

J2 = σz ⊗ iσy ⊗ I2 ⊗ I2 ⊗ Ir

J3 = σx ⊗ iσy ⊗ σz ⊗ I2 ⊗ Ir

J4 = σx ⊗ iσy ⊗ σx ⊗ I2 ⊗ Ir

J5 = σz ⊗ σx ⊗ iσy ⊗ I2 ⊗ Ir

J6 = σx ⊗ I2 ⊗ iσy ⊗ I2 ⊗ Ir

J7 = σz ⊗ σz ⊗ iσy ⊗ σz ⊗ Ir

J8 = σz ⊗ σz ⊗ iσy ⊗ σx ⊗ Ir

together with the operators to separate the space into commuting blocks:

K = J1J2J3 = I2 ⊗ I2 ⊗ σz ⊗ I2 ⊗ Ir

M = J1J4J5 = −I2 ⊗ σz ⊗ σz ⊗ I2 ⊗ Ir

N = J2J4J6 = σz ⊗ I2 ⊗ σz ⊗ I2 ⊗ Ir

P = J1J6J7 = −I2 ⊗ σz ⊗ I2 ⊗ σz ⊗ Ir

and operators which relate two different diagonal blocks

L = J3J4 = −I2 ⊗ I2 ⊗ iσy ⊗ I2 ⊗ Ir

Q = J7J8 = −I2 ⊗ I2 ⊗ I2 ⊗⊗iσyIr

in the above formulism , we choose a specific symmetry breaking operator and then to derive the groups
with the specific symmetry constrain. At present, we try to consider another question, what’s the degree
of freedom of choosing these symmetry operators?

namely, if we have J1, J2, · · · , Ji choosing, what’s the space for choosing Ji+1 which is square to -1
and anti-commute with J1, J2, · · · , Ji, This is equivalent to consider the extension of Clifford algebra from
Cli,0 to Cli+1,0 in O(16r), we denote the space of choosing this generator Ji+1 as Ri+2 and the group
which commute with J1, J2, · · · , Ji in O(16r) as Gi. . Things seem to be quite hard, since we have less
knowledge about this extra generator. But it will become clear if we try to figure out this space with
another isomorphic space with the help of a pre-founding specific J0

i+1, namely, suppose we have already
have J0

i+1 ∈ Ri+1. then we donote the group which commute with J1, J2, · · · , Ji, J
0
i+1 in O(16r) as Gi+1.

since we have
∀g ∈ Gi, (gJ

0
i+1g

−1)2 = g(J0
i+1)

2g−1 = g(−1)g−1 = −1

∀g ∈ Gi, gJ
0
i+1g

−1Jk + JkgJ
0
i+1g

−1Jk = g(J0
i+1Jk + JkJ

0
i+1)g

−1 = g0g−1 = 0

this is to say that for all g in Gi, the conjugation of J0
i+1 by g lie in the space Ri+1, so the space Ri+1 may

be just the space of the orbital J0
i+1 under this conjugation, since the Gi+1 ⊂ Gi makes J0

i+1 invariant,
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this orbital is isomorphic to the group Gi/Gi+1, so we have

Ri+1 = Gi/Gi+1

in symmetry space language, Gi is the isometry group of Ri+1 and Gi+1 is the isotropy group of the specific
elements J0

i+1 ∈ Ri+1. In the following, we show that Gi/Gi+1 is a symmetry space. so we consider the
Lie algebra of Gi, donated as gi, since we have for any g ∈ Gi

J0
i+1gJ

0,−1
i+1 Jk = −J0

i+1gJkJ
0,−1
i+1 = −J0

i+1JkgJ
0,−1
i+1 = JkJ

0
i+1gJ

0,−1
i+1

thus J0
i+1gJ

0,−1
i+1 ∈ Gi, saying conjugation by J0

i+1 is an transformation on Gi, besides, J0,2
i+1 = −1, so this

is an order two isometry, so it is an involution and the fixed group of this involution is Gi+1, since it
commute with J0

i+1, so Gi/Gi+1 is a symmetry space (see Appendix for details if need).
besides, this involution induced an isomorphic of the Lie algebra of Gi, this algebra is divided into

two parts, one of which is the +1 eigen-space of this involution:

J0
i+1X+J

0,−1
i+1 = X+

another one is the -1 eigen-space:
J0
i+1X−J

0,−1
i+1 = −X+

we can find that X+ is just the space of the lie algebra gi+1 of Gi+1. so we have

gi = gi+1 ⊕mi

they satisfy the algebra of the tangent vectors of the symmetry space due to the fact that the they are
+1,−1 eigen-space correspondingly:

[gi+1, gi+1] ⊂ gi+1 [mi, gi+1] ⊂ mi [mi,mi] ⊂ gi+1

so the tangent space of Ri+1
∼= Gi/Gi+1 consisting of the elements, which belongs to the -1 eigen-space of

this involution, namely, it commutes with J1, J2 · · · , Ji and anti-commute with J0
i+1. the connected part

of Gi/Gi+1 is Exp(mi) and the isomorphic map between Ri+1 and Gi/Gi+1 in this connected part is given
by

gJ0
i+1g

−1 = eHJ0
i+1e

−H

where H ∈ mi which commutes with J1, J2 · · · , Ji and anti-commutes with J0
i+1, so we have the following

sequence with symmetry space labelled:

· · ·O(16r)
J1⊃
R2

U(8r)
J2⊃
R3

Sp(4r)
J3⊃
R4

Sp(2r)× Sp(2r)
J4⊃
R5

Sp(2r)

J5⊃
R6

U(2r)
J6⊃
R7

O(2r)
J7⊃
R0

O(r)×O(r)
J8⊃
R1

O(r) · · · (6)

where the lower symmetry space means that the space of choosing the above generator, for example, R4

is the symmetry space of choosing J3, namely, the extension from Cl2,0 to Cl3,0

the above is the whole story of the case where J2
i = −1, then what happens if we require J2

i = +1,
in this case we use Ei to replace Ji in order to remove chaos of marks.

1. if we add a single E1 to O(16r), since E2
1 = +1, we can choose the basis to be the elements of ±1

eigen-space V± of E1, then E1 is diagonal, so the constrain

OE1 = E1O
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will separate O into diagonal two blocks, so the group G1 is

G1 = O(n1)×O(n2) n1 + n2 = 16r

for the purpose that this sequence can advance, we choose the case where n1 = n2 = 8r, namely

G1 = O(8r)×O(8r)

2. if a second one E2 goes into the problem, since E1E2 = −E2E1, so E1V+ = V−, so if we further
require

OE2 = E2O

O should be reduced to the diagonal elements of G1, namely

G2 = O(8r)⊗ I2 ∼= O(8r)

3. if we further add more Ei, i > 2, we can consider the elements Ji = E1E2Ei,which commute with
both E1 and E2 since

JiE1 = E1E2EiE1 = −E1E2E1Ei = E1E1E2Ei = E1Ji

JiE2 = E1E2EiE2 = −E1E2E2Ei = E2E1E2Ei = E2Ji

further more we have the anti-commuting relations between Jj :

JiJk = E1E2EiE1E2Ek = E1E2E1E2EiEk = −E1E2EkE1E2Ei = −JkJi

since J2
i = (E1E2Ei)

2 = −1. so adding k+2 Ei’s to constrain the group O(16r) is equivalent to
adding just k Ji’s to the group O(8r), This is the result from the Clifford algebra isomorphic

Cl0,k+2
∼= Clk,0 ⊗ Cl0,2 Cl0,2 ∼= R2×2

and Cl0,2 is removed by considering E1, E2. since we have work out the case where J2
i = −1, so

we have done all the sequence: ( since we care about the case r is large enough, so to identify the
symmetry space Ri, we only care about the two groups, not the dimension because we can choose
proper r to make the dimension mathces)

· · ·O(16r)
E1⊃
R0

O(8r)×O(8r)
E2⊃
R1

O(8r)
E3⊃
R2

U(4r)
E4⊃
R3

Sp(2r)

E5⊃
R4

Sp(r)× Sp(r)
E6⊃
R5

Sp(r)
E7⊃
R6

U(r)
E8⊃
R7

O(r) · · · (7)

using the sequence of adding Ji and Ei, we can derive the case with general p Ji and q Ei, namely,
adding a Clifford algebra Clp,q, we consider the special case when adding one E and one J at the
same time.

since E2 = +1, we can use the basis where E is diagonal, so the constrain

OE = EO

reduce the group to the diagonal blocks. secondly, since EF = −FE, F convert V+ to V−, so the
constrain

OF = FO
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make sure the two diagonal blocks are the same, so under considering two such symmetry operators.
the group survive is the same as before but with the dimension reduced to half of the previous one,
for example

U(2r) → U(r)

This is the result of isomorphic between Clifford Algebra:

Clp,q ∼= Clp−1,q−1 ⊗ Cl1,1 Cl1,1 ∼= R2×2

since we can choose the dimension properly, so we can just say it has no effect on the group. due
to this reason, the group survive after adding Clp,q is the same as the group surviving after adding
Cl0,q−p or equivalently Clp−q,0. if we consider the space to adding an extra negative one, namely,
Ji, upon the space we derived where we have already adding p negative and q positive one.we
have degree of freedom of choosing this extra lies in the space Rp−q+2 by using the isomorphsim
Clp,q ∼= ⊗qCl1,1 ⊗ Clp−q,0 and the sequence (6) or equivalently , in the language of Clifford algebra
extension:

Clp,q
Jp+1
=⇒

Rp−q+2

Clp+1,q

if we consider to adding an extra positive one, the degree of freedom of choosing this extra positive
one lies in the space Rq−p by using the isomorphsim Clp,q ∼= ⊗pCl1,1 ⊗ Cl0,q−p and the sequence (7)
or equivalently , in the language of Clifford algebra extension:

Clp,q
Jq+1
=⇒
Rq−p

Clp,q+1

in the last, we consider the case with unitary group U(2r), in this case, if we add an J1 and require

UJ1 = J1U

what can survive in this case, since the complex entry of the metrics is allowed for complex unitary metrics,
we can always choose the basis where J1 is diagonal whenever J2

1 = ±1. then the constrain will make U
into two diagonal blocks, so the group survive is just

G1 = U(r)× U(r)

when adding an extra J2, since J2J1 = −J1J2, the extra constrain will only make only the diagonal part
allowed, since then

G2 = U(r)

thus we get the sequence for the complex unitary group and the complex Clifford Algebra extension:

· · ·U(2r)
J1⊃
C0

U(r)× U(r)
J2⊃
C1

U(r) · · · (8)

∮
.3 Properties of these symmetry space

there are four main properties about these symmetry space, in this section, we try to explain them
in details.

1. the symmetry spaces derived above serve as two roles, one of which is inspiring from the Altland
and Zirnbauer’s Approach, that is:
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the hamiltonian with specific symmetry lie in the tangent space of these symmetry space.

for example, if H possess the particle-hole symmetry with P 2 = +1 then X=iH form the Lie algebra
of SO(4N), which is also an Lie algebra of the symmetry space

R1 = O(4N)×O(4N)/O(4N) ∼= O(4N)

if H possess the particle-hole symmetry with P 2 = +1 and the spin rotation symmetry, then the
effective spin-up block of H has particle-hole symmetry with P 2 = −1 and X↑ = iH↑ forms the Lie
algebra of Sp(2N) which is isomorphic to the symmetry space

R5 = Sp(2N)× Sp(2N)/Sp(2N)

if H possess the particle-hole symmetry with P 2 = +1 and Time reversal symmetry T 2 = −1, then
X=iH form the Lie algebra of SO(4N)/U(2N), which is also an Lie algebra of the symmetry space

R2 = O(4N)/U(2N)

if H possess the particle-hole symmetry with P 2 = +1 and Time reversal symmetry T 2 = −1 and
spin rotation symmetry, then the effective spin up block X↑ = iH↑, and this effective hamiltonian
has symmetry with P 2 = −1, T 2 = +1 since we only consider the one spin block, and it forms the
Lie algebra of Sp(N)/U(N), which is the Lie algebra of the symmetry space

R6 = Sp(N)/U(N)

2. on the other hand,

the symmetry space serve as the classification space of the fiber bundles over the base space

for example, the classifying space of all rank N real-vector bundles is just the real Grassmannian
GN (RN+m), since we can use this classifying space to construct the tautological trivial bundles and
any vector bundles is a pull back of this bundle, we have

R0 = O(N +m)/(O(N)×O(m)) ∼= GN (RN+m)

so the symmetry space also serve as the classifying space of some kind of Fiber Bundles. and the
classifying space is uniquely determined by Groups acting on the Fibers of these Fiber Bundles.

in the above example, the Group acting on the Fiber is O(N), and the the classifying space is
uniquely determined by it as

R0 = lim
m→∞

O(N +m)/(O(N)×O(m)) := BO(N)

since classification of such fiber bundles is equivalent to find the homotopy groups of the classifying
space by pulling back using this homotopy group element [X,Rs]. so it’s important to figure out
these homotopy groups.

3. if X is Sn, such groups is donated by πn(Rs), and we have

πn(Ri) ∼= πn+1(Ri−1) (9)
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this can be proved by showing that the loop space of Ri, donated as ΩRi, which is isomorphic to
Ri+1 for any i and thus we have

πn(Ri) ∼= πn(ΩRi−1) ∼= πn+1(Ri−1)

in order to achieve this, we consider the element Ai = J−1
i Ji+1 in the following context

Gi−1

Ji⊃
Ri+1

Gi

Ji+1

⊃
Ri+2

Gi+1

since AiJi = −JiAi and for k<i, we have AiJk = JkAi, besides, A2
i = (−JiJi+1)

2 = −1, these shows
that Ai square to -1 and commute with Jk, k < i and anti-commute with Ji, so it’s is an element of
the tangent space of Ri+1, thus the curve

γ(t) = Jie
πAit = Ji cos(πt) + JiAi sin(πt) = Ji cos(πt) + Ji+1 sin(πt)

is a geodesic curve in the space Ri+1 in the context of equivalence by Gi conjugation due to Ji ∈ Ri+1,
since γ(0) = Ji is the same as γ(2) = Ji in the space Ri+1 = Gi/Gi+1, and γ(1) = −Ji. so this curve
can be regarded as an elements of ΩRi+1. the exciting point is that γ( 1

2
) = Ji+1 ∈ Ri+2, so for each

loop, we can associate an element in Ri+2 with it by γ( 1
2
), thus we have

ΩRi+1
∼= Ri+2

this is much similar like that the geodesic curve connecting the north and south pole can be mapped
to the equator! so we have proved

ΩRi+1
∼= Ri+2 → πn(Ri) ∼= πn+1(Ri−1)

use this result, the Bott periodic is trivial since R0 = R8 in the limit r → ∞

πn+8(Rs) = πn(Rs+8) = πn(Rs) → πn+8O(N) = πnO(N)

4. Following the above notation, we try to show that Qi
∼= Ri+2, where Qi := {Q ∈ Tan(Ri+1);Q

2 =

−1}, if we fix a specific Ji, then the the following map

Ri+2 → Qi : Ji+1 → J−1
i Ji+1

give us a correspondence between this two space since Qi consisting of the elements which commute
with Jk, k < i, anti-commute with Ji and squares to -I, which satisfied by J−1

i Ji+1.

secondly, for any Q ∈ Qi , the following map

Qi → Ri+2 : Q → JiQ

give us an inverse map, since JiQJk = JiJkQ = −JkJiQ, JiQJi = −JiJiQ and (JiQ)2 = −J2
i Q

2 = −1

so as to make sure JiQi an candidate of Ji+1. From this above two map, we have shown that

Qi
∼= Ri+2

we should notice that since Qi is just the space iH with the hamiltonian H in specific symmetry
class and only has ±1 eigen-value (flattened hamiltonian). so using this isomorphism, we can use
the homotopy groups of the symmetry space to reach the goal of the topological classification of the
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hamiltonian with specific symmetry, namely, if the hamiltonian lies in the tangent space of Ri, then
the classifying space of these hamiltonian is Ri+1

Finally, what remains is just to figure out the correspondence between the hamiltonian with the
specific symmetry and the corresponding symmetry space whose tangent space carry on these hamil-
tonian. Just like the Altland and Zirnbauer’s Approach gives us.

∮
.4 correspondence between hamiltonian class and the associated symmetry space

In order to identify the symmetry class that the hamiltonian share, we need to multiply the factor −i

to the tangent space of the symmetry space, because we have noticed that the hamiltonian in physics is
hermitian, which is not closed under the Lie bracket, we have already multiply i to make it anti-hermitian
and since then to figure out that X = iH lies in some kind of symmetry space.

the complex unit factor i should satisfy the following conditions:

1. i is an element of some real orthogonal groups, this condition arises due to the fact that the maximum
space X = iH without any symmetry is the Lie algebra of some orthogonal groups in the real case

2. i2=-1, this make it a complex unit

3. i should commute with the concerning tangent space m of some symmetry space, this condition arises
due to the fact that i act just as a complex number in the space m which is isomorphic to iH

after introducing such factor i,then we have to identify the possible symmetry operator T and C which is
anti-linear with respect to this i, namely

Ti = −iT Ci = −iC

after considering all the possible anti-linear operators, we can then identify the symmetries the corre-
sponding hamiltonian H = −iM,M ∈ m possess!

1. we start from the space R1, which is derived from the following chain

O(16r)×O(16r)
J0→
R1

O(16r)

then the tangent space of R1 denoted as m−1, is the elements in the Lie algebra of O(16r)×O(16r)(

which is isomorphic to
(

X1 0

0 X2

)
) that anti-commute with J0

m−1 = {X ∈ o(16r)⊕ o(16r);XJ0 = −J0X} ∼= o(16r)

and we have the space of the elements which belong to the +1 eigen-space of the involution J0,
denoted as h−1 is:

h−1 = g0 = {X ∈ o(16r)⊕ o(16r);XJ0 = +J0X} ∼= o(16r)

then we need to choose a complex unit i, if we only consider the above short chain, we argue that
there is no such i as following.

from the condition 1 and 2, we know that i should be the form i =

(
X1 0

0 X2

)
where

X2
1,2 = −1, XT

1,2 = −X1,2, since iT = i−1 = −i.
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At present, we can choose a specific J0 = iσy ⊗ I16r =

(
0 I

−I 0

)
, then m−1 = σz ⊗X,X ∈

o(16r). then i should be commute with σz⊗o(16r) ∼= o(16r), from Schular’s lemma, this can happen
only when i = λI, thus i2 = λ2 ̸= −1 within the real metrics, so no such i can exists in this short
chain.

we can choose the demanded i by considering the group O(16r) × O(16r) is inherited from the
previous chain, namely

· · ·Sp(32r) J−3→
R−2

U(32r)
J−2→
R−1

O(32r)
J−1→
R0

O(16r)×O(16r)
J0→
R1

O(16r)

the complex unit should be regarded as an element in O(32r)(which may be considered as inherited
from an even larger space if need), in this longer chain, we can choose

i = J−1

since (J−1)
2 = −1 and J−1 commute with Lie(O(16r)×O(16r)), then the hamiltonian is read as

H = −J−1m−1

the anti-linear maps, which may be a candidate of T or C, can be choosen as ϕ = J0,and we find
that

ϕH = J0(−J−1)m−1 = J−1J0m−1 = −J−1m−1J0 = Hϕ

since J0 anti-commute with m−1 and J−1 commute with it.

then this ϕ defines a Time-Reversal symmetry on the hamiltonian H = −im−1 = −J−1m−1 which
squares to -1, how about other possible symmetries? if we choose ϕ = J0J−1 which is anti-linear,
and

ϕH = J0J−1(−J−1m−1) = −J−1m−1J0J−1 = Hϕ

and ϕ2 = −1, so it’s another Time-Reversal symmetry on the hamiltonian H = −im−1 = −J−1m−1

which squares to -1. but this one is equal to the previous one since J−1 is just the complex unit i. so in
conclusion, in this case, it belongs to the symmetry class C which is not coincidental with the results
of their[1]. the reason lies in the fact that in the chain, we regard the symmetry breaking operator
J−2,−1,0 as the elements of O(256r), which may be not effective square to −1 in the subspace R32r,
for example, following the notation of previous sections, J−1 = J7 ⊗ I16r = σz ⊗ σz ⊗ iσy ⊗ σz ⊗ I16r

which squares to -1, but in the space R32r it effective acts as σz ⊗ I16r, so it squares to +1 in this
subspace, or equivalently, only with E2

−1 = +1, the following chain is correct

O(32r)
E1→
R0

O(16r)×O(16r)
E2→
R1

O(16r)

which makes it an illegal complex unit i, so the above argument lose it’s meaning! in order to make
it legal, we need to consider even longer chain.

O(256r) · · · J−4→
R−3

Sp(32r)
J−3→
R−2

U(32r)
J−2→
R−1

O(32r)
J−1→
R0

O(16r)×O(16r)
J0→
R1

O(16r)

which resembles the Clifford algebra isomorphic

Cl6,0 → Cl7,0 ∼= Cl2,0 ⊗ Cl0,2 ⊗ Cl2,0 → Cl0,2 ⊗ Cl2,0 ⊗ Cl0,1 ∼= R8×8 → R8×8 ⊗ Cl0,1
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which means that adding the 7-th J7 is the same as adding just 1st E1 to the existing system. due
to the above reasons, we must consider even longer chain to find the suitable i.

but why so bother, what we need is clear, a complex unit i, we can simply make an artificial block

m−1 → I2 ⊗m−1

and choose an operator that squares to -1 on considering this artificial block

in = iσy ⊗ I

then it naturally commute with M̃ = I2⊗M,M ∈ m−1, which make it a legal complex unit in(in the
following we use the subscript n to distinguish between the new legal complex unit in the hamiltonian
space and the standard one which is denoted as i), so the hamiltonian becomes

H = −inM̃ = −(iσy ⊗ I)I2 ⊗M = −iσy ⊗M

since we use a new strategy to choose new complex unit in, so there is no other constrain on M
besides that it belongs to o(16r) ∼= Tan(O(16r) ⊗ O(16r)/O(16r)), so all the anti-linear operators
with respect to this complex unit in are

σx ⊗ I σz ⊗ I

but they are not independent since

σx ⊗ I = (σz ⊗ I)(iσy ⊗ I) = σz ⊗ Iin

so we can only consider one of it namekly ϕ = σz ⊗ I, then we have

ϕH = −Hϕ

so this anti-linear operator defines a particle-hole symmetry on the hamiltonian which squares to
+1, thus it belongs to the hamiltonian class D.

D ≡ R1 = O(16r)×O(16r)/O(16r) ∼= O(16r) (10)

2. as for the symmetry space R2, there is an extra constrain on M ∈ m0 that anti-commute with J1

O(16r)
J1→
R2

U(8r)

since J1 anti-commute with M ∈ m0, it can not also serve as an complex unit i, due to the same
reason above, we use the strategy of constructing an artificial block

m0 → I2 ⊗m0 in → iσy ⊗ I ϕ = σz ⊗ I

in this case, ϕ is also a particle-hole operator which squares to -1

ϕH = −Hϕ ϕ2 = +1

but, we have another anti-linear operator ϕ1 = ϕ(I2 ⊗ J1) = σz ⊗ J1, since ϕ1in = −inϕ1, besides,
we have

ϕ1H = ϕ1iσy ⊗M = (σz ⊗ J1)(iσy ⊗M) = (iσy ⊗M)(σz ⊗ J1) = Hϕ1

since σz anti-commute with σy and J1 anti-commute with M. so ϕ1 is an Time-Reversal operator
which squares to (σz ⊗ J1)

2 = −I, which make the hamiltonian belongs to the class DIII.

DIII ≡ R2 = O(16r)/U(8r) (11)
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3. let’s move on to the symmetry space R3:

O(16r)
J1→
R2

U(8r)
J2→
R3

Sp(4r)

in this case, since J1 commutes with the element M ∈ m1 and squares to -1, so it can be used
as an legal complex unit in in the hamiltonian space H = −iM = −J1M . then there is only one
independent anti-linear operator ϕ = J2, since J2in = J2J1 = −J1J2 and we have

ϕH = J2J1M = −J1J2M = J1MJ2 = Hϕ

so ϕ is a Time-reversal Operator which squares to -1, due to this reason, the hamiltonian belongs to
the symmetry class AII.

AII ≡ R3 = U(8r)/Sp(4r) (12)

4. as for the symmetry space R4:

O(16r)
J1→
R2

U(8r)
J2→
R3

Sp(4r)
J3→
R4

Sp(2r)× Sp(2r)

in this case K = J1J2J3 square to +1, but M anti-commute with K, so we can not use K to put M
into diagonal blocks. so we can not separate it into small blocks

in this case M ∈ m2, which commute with J1, J2, so we can choose either be the legal complex unit
, we choose in = J1 as before.

then the possible independent anti-linear operators are J2, J3, as for ϕ1 = J2, we have

ϕ1H = J2J1M = −J1J2M = −J1MJ2 = −Hϕ

so ϕ1 is a Particle-Hole symmetry operator which squares to -1.

as for ϕ2 = J3, we have
ϕ2H = J3J2M = −J2J3M = J2MJ3 = Hϕ2

so ϕ2 is a Time-Reversal Operator which squares to -1.ϕ1ϕ2 = J2J3 is a linear operator and serve as
the role of chiral operator which squares to -1, this also verifies that H can not be split into small
blocks. thus the hamiltonian belongs to the symmetry class CII

CII ≡ R4 = Sp(4r)/Sp(2r)× Sp(2r) (13)

5. let’s move onto the symmetry space R5:

O(16r)
J1→
R2

U(8r)
J2→
R3

Sp(4r)
J3→
R4

Sp(2r)× Sp(2r)
J4→
R5

Sp(2r)

in this case, K = J1J2J3 squares to +1 and commute with M ∈ m3 since M commute with J1, J2, J3

and anti-commute with J4 , so M can be put into diagonal blocks with respect to the eigen-values
of K, we choose the block where K equals to +1. and denoted the new block as m+

3 since we only
care about the symmetries in the irreducible blocks.

since J1, J2, J3 commute with K, commute with m3 and square to -1, so they are all legal complex
unit in the hamiltonian space J1m3 and the chosen block J1m

+
3 , we choose in = J1 as before.
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in the chosen block J1m
+
3 , only the operator commute with K are allowed, so all the possible anti-

linear operators are J2, J3, since K = J1J2J3 = +1 in this block, they are not independent.

J2 = J1J1J2J3J3 = J1 + 1J3 = inJ3

so only one an-ti linear independent operator ϕ = J2

ϕH = J2J1M
+ = −J1J2M

+ = −J1M
+J2 = −Hϕ

thus it serve as a Particle-Hole symmetry which squares to -1. so the chosen block hamiltonian
belongs to the symmetry class C.

C ≡ R5 = Sp(2r)× Sp(2r)/Sp(2r) ∼= Sp(2r) (14)

if we consider the whole space instead of one block. then all the possible anti-linear operators are

J2, J3, J4, J2J3J4

J2, J3 are two Particle-Hole symmetry operator that squares to -1, and J4 is an Time-Reversal
symmetry that squares to -1, J2J3J4 is an Time-Reversal Operator that squares to +1. all these
symmetry reduced to one Particle-Hole symmetry operator that squares to -1 effectively in one
irreducible block.

6. as for the symmetry space R6

O(16r)
J1→
R2

U(8r)
J2→
R3

Sp(4r)
J3→
R4

Sp(2r)× Sp(2r)
J4→
R5

Sp(2r)
J5→
R6

U(2r)

in this case, we at first try to figure out the possible diagonal blocks. we can try to find the operators
that are mutually commute and each commutes with M ∈ m4 and squares to +1.

in this case, K = J1J2J3 is such an operator. in order to choose another one, we can only pick one of
J1J2J3 so as to make these two mutually commute, thus the only possibility is M0 = J1J4J5(we put
the subscript 0 to avoid misleading ), but M0 anti-commute with M ∈ m4 since J5 anti-commute
with it and J1, J4 commute with it

so, only, two blocks which is the ±1 eigen-space of K, as before, we consider the +1 block, namely
M+ ∈ m+

4

and we choose the legal complex unit in = J1 as before. then the allowed anti-linear operators in
this block are( commute with K = J1J2J3 and anti-commute with J1)

J2, J3, J2J4J5, J3J4J5

and the independent anti-linear operators in this block are(note that J2 = inJ3)

J2, J2J4J5

as for ϕ1 = J2,we have

ϕ1H = J2J1m
+
4 = −J1J2m

+
4 = −J1m

+
4 J2 = −Hϕ1

thus ϕ1 is a Particle-Hole symmetry operator that squares to -1
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as for ϕ2 = J2J4J5,we have
ϕ2H = J2J4J5J1m

+
4 = J1m

+
4 J2J4J5

thus ϕ2 is a Time-Reversal symmetry operator that squares to +1

so the hamiltonian belongs to the symmetry class CI

CI ≡ R6 = Sp(2r)/U(2r) (15)

similarly, if we consider the whole space m4, then the allowed anti-linear operators are

J2, J3, J4, J5, J3J4J5, J2J4J5, J2J3J4

J2, J3, J4 are particle-hole symmetry operators that squares to -1,J2J3J4 is particle-hole symmetry
operators that squares to +1,J3J4J5, J2J4J5 are time-reversal operators that square to +1, all these
symmetry reduced to a Particle-Hole symmetry operator that squares to -1 and a Time-Reversal
symmetry operator that squares to +1 in the diagonal one block.

7. let’s go advance for the symmetry space R7

O(16r)
J1→
R2

U(8r)
J2→
R3

Sp(4r)
J3→
R4

Sp(2r)× Sp(2r)
J4→
R5

Sp(2r)
J5→
R6

U(2r)
J6→
R7

O(2r)

in this case, K = J1J2J3,M0 = J1J4J5 mutually commute and each of it commute with M ∈ m5

since J1, J2, J3, J4, J5 commute with M and J6 anti-commute with M. so we can choose the block
with K,M0 take the value +1, namely, in the space M++ ∈ m++

5 . in this case J1 commutes with
both K and M0, besides it also commutes with M++ and square to -1. so it’s also an legal complex
unit in the hamiltonian space J1m

++
5 .

then all the possible anti-linear operators in this block are(commute with K and M0, anti-commute
with J1)

J2J4J6, J2J5J6, J3J4J6, J3J5J6

and since K = J1J2J3 = +1 and M0 = J1J4J5 = +1, so the J2 = J1J3 = inJ3 and J4 = J1J5 = inJ5,
which means J2 and J3 are the same and J4 and J5 are the same, thus the independent anti-linear
operator in this block is just

J2J4J6

thus ϕ = J2J4J6, we have

ϕH = J2J4J6J1m
++
5 = J1m

++
5 J2J4J6 = Hϕ

thus it defines a Time-Reversal symmetry operator that squares to +1, so the hamiltonian belongs
to the symmetry class AI.

AI ≡ R7 = U(2r)/O(2r) (16)

similarly, we can discuss all the possible symmetry operators in the whole space J1m5, we ignore it
here since it give us no more information and we only care about the irreducible blocks.

8. as for the symmetry class R8,

O(16r)
J1→
R2

U(8r)
J2→
R3

Sp(4r)
J3→
R4

Sp(2r)× Sp(2r)
J4→
R5

Sp(2r)
J5→
R6

U(2r)
J6→
R7

O(2r)
J7→
R8

O(r)×O(r)
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§1 THE MECHANISM BEHIND THE FACE OF THE BOTT CLOCK[? ]

then K = J1J2J3,M0 = J1J4J5, N = J2J4J6 are mutually commuting and each of these commute
with M ∈ m6.thus we can just consider one block denoted as M+++ ∈ m+++

6 . but this will bring us
another problem that is the choice of the complex unit in.

because in should be commute with K,M0, N,m+++
6 and squares to -1. we argue that there is no

such element in this block. this is the similar as the case we discussed in R1.

at first, since J7 anti-commute with m+++
6 , so, in can not contain any factor of J7,since it squares

to -1, so it must consist of 1,2,5,6 of such Ji’s, let’s enumerate it as following.

at first , just one such Ji involved, it should be commuting with K,M0, thus it must be J1, but J1

is not commuting with N, so this case is excluded.

two kind of such Ji involved, so it should contain two or none factor of K,M0 or N , that is possible,
since K,M0 or N only has at most one common factor

five kind of such Ji, thus it can be write as ±J1J2J3J4J5J6Ji, since J1J2J3J4J5J6 anti-commutes
with K,M0, N , thus the extra Ji must anti-commute with all of K,M0, N , that is impossible, since
K,M0, N contains one such factor Ji.

six kind of such Ji, the only possibility is J1J2J3J4J5J6 but it anti-commutes with K,M0, N

so if we choose this block, we can not find a complex structure in, thus it’s impossible for us to define
the anti-linear operator.

instead, we choose some larger block, namely, we add the block where N equals to -1 to the hamil-
tonian, or equivalently, we consider the block m++

6 as in the case of R7, where K and M0 take the
value of +1

then we can also choose the complex unit as in = J1 as before. then the possible independant
anti-linear operators are(anti-commute with J1 and commuting with K,M0)

J2J4J6, J2J4J7

if we choose ϕ1 = J2J4J6, we have

ϕH = J2J4J6J1m
++
6 = −J1m

++
6 J2J4J6 = −Hϕ

thus it’s a Particle-Hole symmetry operator that squares to +1

if we choose ϕ1 = J2J4J7, we have

ϕH = J2J4J7J1m
++
6 = −J1J2J4J7m

++
6 = +J1m

++
6 J2J4J7 = Hϕ

thus ϕ2 is a Time-Reversal operator that squares to +1, so the hamiltonian belongs to the symmetry
class BDI

BDI ≡ R8 = O(2r)/O(r)×O(r) (17)

9. Finally, let’s consider what happens if we consider one more such chains, namely R9

O(16r)
J1→
R2

U(8r)
J2→
R3

Sp(4r)
J3→
R4

Sp(2r)× Sp(2r)
J4→
R5

Sp(2r)
J5→
R6

U(2r)
J6→
R7

O(2r)
J7→
R8

O(r)×O(r)
J8→
R9

O(r)

in this case, the mutually maximum commuting operators that square to +1 and each commute with
m7 are
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§1 THE MECHANISM BEHIND THE FACE OF THE BOTT CLOCK[? ]

K = J1J2J3,M0 = J1J4J5, N = J2J4J6, P = J1J6J7

so we can choose one block, m++++
7 , due to the same reason that we can not choose a legal complex

unit in this block, we must add the -1 block of the N operator to our hamiltonian, and effectively,
consider the block m+++

7 , where K,M0, P take the value +1.

in this case, we can still regard J1 as the complex unit in, then the independent anti-linear operators
in this block(commute with K,M0, P ,anti-commute with J1) are(J8 is not allowed in this block since
it anti-commute with K,M0, P )

J2J4J6

thus ϕ = J2J4J6 ,and we have

ϕH = J2J4J6J1m
+++
7 = −J1J2J4J6m

+++
7 = −J1m

+++
7 J2J4J6 = −Hϕ

thus ϕ defines a particle hole symmetry operator that squares to +1, so the hamiltonian of the
concerning block belongs to the class D. in this case, J1 plays the role of the iσy ⊗ I in R1 and
N = J2J4J6 plays the role of σz ⊗ I in R1 in our artificial construction of the complex unit in and
argue that it should be lying in some ever larger space(longer chain).

in this stage, we point out that that’s just the case and we should consider the whole chain to figure
out this artificial in, but the effect is the same, and it bring us to a full circle.

D ≡ R9 = O(r)×O(r)/O(r) ∼= R1 = O(16r)×O(16r)/O(16r)

in conclusion, we collect all the results above in the following table and the following chain:

O(16r)
J1→
R2

U(8r)
J2→
R3

Sp(4r)
J3→
R4

Sp(2r)× Sp(2r)
J4→
R5

Sp(2r)
J5→
R6

U(2r)
J6→
R7

O(2r)
J7→
R8

O(r)×O(r)
J8→
R9

O(r)

Table 1: the symmetry space and the corresponding hamiltonian and their symmetry class

Class T T 2 C C2 Complex Unit i M = Gi/Gi+1 H vs m = TMQ = Flatten(H)

D 0 0 σz ⊗ I + iσy ⊗ I O(16r)×O(16r)/O(16r) ∼= O(16r)H = −iI2 ⊗m R2

DIII σz ⊗ J1 − σz ⊗ I +1 iσy ⊗ I O(16r)/U(16r) ∼= O(16r) H = −iI2 ⊗m R3

AII J2 − 0 0 J1 U(8r)/Sp(4r) H = −im R4

CII J3 − J2 − J1 Sp(4r)/Sp(2r)× Sp(2r) H = −im R5

C 0 0 J2 − J1 Sp(2r)× Sp(2r)/Sp(2r) H = −im+ R6

CI J2J4J5 + J2 − J1 Sp(2r)/U(2r) H = −im+ R7

AI J2J4J6 + 0 0 J1 U(2r)/O(2r) H = −im++ R8
∼= R0

BDI J2J4J7 + J2J4J6 + J1 O(2r)/O(r)×O(r) H = −im++ R1

D 0 0 J2J4J6 + J1 O(r)×O(r)/O(r) ∼= O(r) H = −im+++ R2
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Appendix
Appendix §1 Riemannian Symmetric Space

ℜ.1 Definitions and Basic Properties

定义 §1.0 A (Riemannian) symmetric space is a Riemannian manifold S with the property that the
geodesic reflection at any point is an isometry of S. Namely, for any x ∈ S, there is some sx ∈ I(S)(the
isometry group of S) with the following properties:

sx(x) = x dsx|x = −I

where sx called the symmetry at x and dsx|x means that the map of the tangent space induced by sx,
namely

dsx|x(X) =
dsx(γ(t))

dt
|t=0 γ̇(t)|0 = X γ(0) = x

since we can reflect the geodesic, so we can extend any geodesic defined in a small interval to the
whole space, due to the same reason, any two endpoints of a geodesic can be mapped to each other by the
reflection of the midpoint. so the isometry group of S denoted by G=I(S) act transitively on the symmetry
space S.

if we fix a base point p ∈ S, the closed subgroup of G with the property g(p) = p forms a group,
denoted by Gp, this is called the isotropy group, we use K = Gp to represent it.

suppose sp is a symmetry at p, then for any q = gp ∈ S, we find that sgp := gspg
−1 is a symmetry in

q since
gspg

−1q = q dgspg
−1|q = gdsp|pg−1 = g(−I)g−1 = −I

so we have the following theorem
Theorem §1.0 A symmetric space S is precisely a homogeneous space(I(S) act on S transitively)
with a sym-metry sp at some point p � S.

on the other hand, the G action is equivariant over the following map

G/K → S gK → gp

so we can identify the symmetry space as S = G/K.

ℜ.2 Examples∮
.1 the Euclidean Space

the symmetry at x is sx(x + v) = x − v since sx(x) = x and dsx|x(v) = dsx(x+vt)
dt

= d(x−vt)
dt

= −v

which means that dsx|x = −I. in this case G is the euclidean group E(n) generated by translations and
orthogonal linear maps; the isotropy group of the origin O is the orthogonal group O(n) and we have

Rn = E(n)/O(n)
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∮
.2 The Sphere

if we regard Sn as the subspace of Rn+1 with
∑n+1

i=1 x2
i = 1 with the metric induced from the standard

scalar product in Rn+1, then the symmetry at x ∈ Sn is the reflection along Rx, namely (note that ex = x)

sx(y) =< y, ex > ex − (y− < y, ex > ex) = −y + 2 < y, x > x

since sx(x) = x and dsx|x(v) = d
dt
(−γ(t) + 2 < γ(t), x > x)|t=0 = −v + 2 < v, x > x = −v due to the

fact that < v, x >= 0, since we have < γ(t), γ(t) >= 1, so the tangent space at x is TxS
n = {v ∈ Rn+1;<

x, v >= 0}.
the isometry group is the group G=O(n+1), and the isotropy group at the point en+1 = (0, 0, · · · , 0, 1)

is the group O(n), so we have
Sn = O(n+ 1)/O(n)

∮
.3 The Hyperbolic Space

consider the metric defined in Rn+1 by (x, y) =
∑n

i=1 xiyi−xn+1yn+1, the Hyperbolic Space is defined
as one sheet of the Hyperbolic sphere, namely by, Hn = {x ∈ Rn+1; (x, x) = −1, xn+1 > 0}

in order to make this space a Riemannian manifold, we should show the tangent space is positive
definite, namely TxH

n = {v ∈ Rn+1; (x, v) = 0} has length larger than zero.

(v, v) =
n∑

i=1

v2i − v2n+1 =
n∑

i=1

v2i −
1∑n

i=1 x
2
i + 1

(
∑
i

xivi)
2

>
n∑

i=1

v2i −
∑n

i=1 x
2
i∑n

i=1 x
2
i + 1

(
∑
i

v2i ) =

∑
i v

2
i∑n

i=1 x
2
i + 1

> 0

the symmetry at point x is also the reflection along Rx, suppose we decompose y as the one along x
and vertical to x with respect to the scalar product, y = λyx + vy with (vy, x) = 0, then we have
(y, x) = λy(x, x) = −λy → λy = −(y, x), so we have

sx(y) = −(y, x)x− [y + (y, x)x] = −y − 2(y, x)x

we can verify this is symmetry at x explicitly

sx(x) = −x+ 2x = x dsx|x(v) = −v

and the isometry group is the lorentz group G = O(n, 1)+(+ sign due to the fact that we only pick up one
sheet), the isotropy group of en+1 is again O(n), so we have

Hn = O(n, 1)+/O(n)

∮
.4 The Orthogonal Group

The Riemannian metric on O(n) is induced from the trace scalar product on Rn×n, namely

< x, y >:= tr(xT y) =
∑
i,j

xi,jyi,j

the left and right multiplication with orthogonal matrices preserve this inner product and make the whole
space O(n) invariant, so they act as isometries on O(n) turning O(n) into a homogeneous space.
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besides, consider the following linear map

sI(x) = xT

it also preserve the inner product < sI(x), sI(y) >= tr(xyT ) = tr(xT y) =< x, y > and make the whole
space O(n) invariant. so it’s also an isometry.

so the isometry group is G =< sI , Lg, Rg′ >, the isotropy group at the identity I is K =< sI , Lg ◦
RgT >, and we have

O(n) =< sI , Lg, Rg′ > / < sI , Lg ◦RgT >

and the symmetry at the identity is just the map sI since we have

sI(I) = IT = I dsI |I(v) =
d

dt
sI(γ(t))|t=0 =

d

dt
γT (t)|t=0 = −γT (t)

d

dt
γ(t)γ−1(t)|t=0 = −IvI−1 = −v

and the symmetry at arbitrary element g ∈ O(n) is given by sg = gsIg
−1 and

sg(x) = gsIg
−1x = gsI(g

Tx) = gxT g

∮
.5 Compact Lie groups

let S = G be a compact Lie group with biinvariant Riemannian metric, i.e. left and right translations
Lg, Rg are isometries for any g ∈ G. besides, consider the following map

se(g) = g−1

since se(e) = e and dse|e(v) = d
dt
γ−1(t)|t=0 = −γ−1(t) d

dt
γ(t)γ−1(t)|t=0 = −eve = −v, if se is also a

isometry, then it’s isotropy at the point e and by theorem 1, it’s a symmetry space.
since dse|e = −I which preserve the length of the tangent vector of TeG, and we know for any g ∈ G

seLg = Rg−1se

which means that

dse|g ◦ dLg|e = dRg−1 |e ◦ dse|e → dse|g = dRg−1 |e ◦ dse|e ◦ ◦dLg|−1
e

which show that dse|g preserve the length of the vectors in TgG since Lg and Rg are isometry and
dse|e = −I which preserve the length of the tangent vector of TeG. this shows that se is an isometry.

so G is a symmetry space and we have

G =< se, Lg, Rg > / < se, Lg ◦Rg−1 >

∮
.6 Projection model of the Grassmannians

let S = Gk(R
n) be the set of the all k dimensional linear subspaces of Rn,which is called Grassman

manifold. then the isometry group is G = O(n). and the isotropy group of the standard k dimensional
subspace is K = O(k)×O(n− k), so we have

S = O(n)/(O(k)×O(n− k))

the symmetry sE at a specific point E is the reflection along this subspace E, namely, if F can be decom-
posed as FE ⊕ FE⊥ , then

sE(F ) = FE ⊕−FE⊥
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in the following, we try to consider the Riemann Metric structure on this symmetry space.
we try to consider the following map

S → Hom(Rn, Rn) E → PE

with PE be the projection to the E subspace. which is equivariant in the sense that

gPEg
T = PgE

for any g ∈ O(n)

since Hom(Rn, Rn) ∼= M(n) and PE is symmetric, so PE contained in the space S(n) ⊂ M(n) which
is the space of symmetric metrics. furthermore P 2

E = PE , so it also contained in the space

P (n) := {p ∈ S(n); p2 = p}

PE is k dimensional subspace projection, tr(PE) = k, so the Grassmann manifold can be identified as the
following through the map E → PE

P (n)k = P (n) ∩ S(n)k S(n)k := {x ∈ S(n); tr(x) = k}

then P (n)k is the orbit of the following standard subspace projection PE0
under the conjugate action of

the group O(n) on S(n):

PE0
=

(
Ik 0

0 0

)
and the isotropy group of PE0

is O(k) × O(n − k) ⊂ O(n). we consider the corresponding Lie algebra,
since TIO(n)− TI(O(k)×O(n− k)) has the following form(

0 −LT

L 0

)

for arbitary L ∈ R(n−k)×k, so the dimension of the grassmann manifold is k(n-k).
besides consider the map on S(n) defined by

S(n) → S(n) p → F (p) = p2 − p

since Gk(R
n) ⊂ ker(F ), so we know that TpE

Gk(R
n) ⊂ ker(dFpE

), by the way

ker(dFpE
) = {v ∈ S(n); vpE + pEv = v}

since 1 − pE = pE⊥ , the above equation means that vpE = pE⊥v, so for any vector u ∈ Rn, we can
decompose it as u = uE + uE⊥ , since v(uE) = vpE(uE) = pE⊥v(uE), so we have v(uE) ∈ E⊥. similarly,
v(uE⊥) = pE⊥v(uE⊥) = vpE(uE⊥) = 0, this means that v is a linear map from E to E⊥, which means that

ker(dFpE
) = Hom(E,E⊥)

so dim(ker(dFpE
)) = k(n− k), which means that

TpE
Gk(R

n) = ker(dFpE
)

then we can use the metrics on S(n) to induce the Riemann metrics in the Grassmainn Manifold Gk(R
n)
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so ,finally we have

Gk(R
n) → S(n)k

E → PE

gE → gPEg
T = PgE

suppose sE is the reflection along E in the space Gk(R
n)(the symmetry at E), so we can convert it to the

language that in space S(n)k with ŝE defined by

ŝE(x) = sExs
T
E = sExsE

we show that ŝE is a symmetry at PE ,firstly we have ŝE(PE) = sEPEsE = PE , secondly dŝE |pE
(v) = sEvsE ,

we have

dŝE |pE
(v)(u) = ŝE(v)(uE + uE⊥) = sEvsE(uE) + sEvsE(uE⊥)

= sEv(uE) + sEv(−uE⊥) = −v(uE) + 0 = −v(uE + uE⊥)

= −v(u)

since v ∈ Hom(E,E⊥) if v belongs to TpE
S(n)k, then the above equation means that dŝE |pE

is just -I as
expected. so ŝE is the symmetry at pE

∮
.7 Reflection model of the Grassmannians

similar to the projection model of the grassmainn manifold, we can consider the reflection representa-
tion of the linear subspace, suppose E is a k dimensional linear subspace of Rn, we can consider the map
of the following

Gk(R
n) → Hom(Rn, Rn)

E → sE

where sE is the reflection along the E space, which reflect the vector component in the complement of E.
since sE + I = 2pE , with pE the projection model. so we can identify this Grassmannians as the following
space R(n)k

R(n) = O(n) ∩ S(n) R(n)k = {s ∈ R(n); tr(s) = 2k − n}

∮
.8 Complex Structures on Rn

Let S be the set of orthogonal complex structures in Rn for even n = 2m. The elements of S are real
orthogonal n × n-matrices j with j2 = −I. and we also have j = −jT , thus we have

S = O(n) ∩A(n) = {j ∈ A(n); j2 = −1}

since the eigen value of j are all ±i with multiplicity m, so all S is in a conjugate class, an orbit under
the action of O(n) by conjugation,namely, reduced from the < sI , Lg, Rg′ >(the isometry group of O(n))
to < LgRg−1 >= O(n) , so the isometry group of the S is just the G = O(2m). if we consider a standard
complex structure denoted as

j0 = Im ⊗

(
0 1

−1 0

)
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then the isotropy group of this complex structure i is the metrics g ∈ O(n) satisfying

gj0g
−1 = j0

if we write g as A⊗B, this constrain is just that B

(
0 1

−1 0

)
=

(
0 1

−1 0

)
B, which means

that B has the form of aI + b

(
0 1

−1 0

)
, since then g = A⊗ (aI + b

(
0 1

−1 0

)
), if we regard

the latter one as the complex number due to j20 = −1 , namely aI + b

(
0 1

−1 0

)
= a + bi = c,

then the constrain that ggT = I, implies that (A⊗ c)(AT ⊗ (a− bi)) = AcA
†
c = I, which means that g is

an unitary metrics, since cT = a − bi = c∗ and A ⊗ c is just the complexity of the real metrics A. so the
isotropy group of j0 is just K = U(m), then we have:

S = O(2m)/U(m)

then we consider the tangent space, consider the defining map of S from O(n) to O(n), namely

F : j → F (j) = j2 + 1

then S = ker(Fj) and we have that

TjS = ker(dFj) = {v ∈ A(n); vj + jv = 0}

which consists of the metrics anticommuting with j. as for the space TjU(m), since gjg−1 = j, so

TjU(m) = {v ∈ M(n); vT = −jvj, vj = jv}

and the tangent space of O(2m) at the point j is just

TjO(2m) = {v ∈ M(n); vT = −jvj}

since jT = −j, so we also have if v ∈ TjO(2m), then v = −jvT j, thus we have

v + vT = −j(v + vT )j → j(v + vT ) = (v + vT )j

v − vT = −j(vT − v)j → j(v − vT ) = −(v − vT )j

since v = 1
2
(v + vT ) + 1

2
(v − vT ), so the element of TjO(2m) can be decomposed of the part which is

commute with j and the part which is anti-commute with j, and this two part correspond to the space
TjU(m) and TjS, since only the commute part consists a closed sub lie-algebra, and the symmetry space
is the anti commute part, which is not closed under lie bracket, so we use the quotient to derive this
symmetry space in light of the basic groups

S = O(2m)/U(m)

Tj(O(2m)) = Tj(U(m))⊕ Tj(S)

∮
.9 Real structures on on Cn

Let S be the set of real structures on Cn. A real structure on Cn = R2n is a reflection κ at a totally
real subspace E of half dimension where “totally real”means iE⊥E. In other words, κ is a reflection which
is complex antil-inear.
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since κ is symmetric, if we define S(2n)− as the intersection of S(2n) with the space of complex
antilinear maps on Cn. since complex antilinear maps in Cn can be regard as the reflection with respect
to the real part E if we view Cn as the E ⊕ iE = R2n.

since reflection can be viewed as the subspace of symmetry and orthogonal operators, if further require
the anti-linear ,then it means the -1 eigen-value exists, so only reflection remains. if we denote the complex
structure of Cn as j,then we have

S = S(2n)− ∩O(2n) = {κ ∈ R(2n)n;κj = −jκ}

then we try to figure out the isometry group. since U(n) ⊂ O(2n) is the element g which is commute with
j, so we have

jgκg−1j = gjκjg−1 = gκg−1 (gκg−1)2 = gκ2g−1 = gg−1 = I

which means that U(n) is the isometry group of S.
consider the standard real structure of complex conjugate in Cn, which is anti-linear and refection

over E, E is the real span of a unitary basis of Cn. namely κ0(v) = v̄. the isotropy group of this element
is satisfy that gκ0 = κ0g, which means that g is real metrics, together with the fact that g is element of
U(n), so g should be O(n). so the isotropy group is O(n), then

S = U(n)/O(n)

then we try to figure out the tangent space, for the map F (x) = xTx− I define S ⊂ S(2n)−, we have

ker(dFκ) = {v ∈ S(2n)−; v
Tκ+ κT v = vκ+ κv = 0}

thus v ∈ ker(dFκ) iff the C-linear map κv is a real anti-symmetric (κv)T = vκ = −κv, thus κv ∈ TIU(n)

Moreover, κv anticommutes with κ, so it is purely imaginary with respect to the real structure κ.On
the other hand, the purely imaginary matrices in TI(U(n)) form a complement to TI(O(n)), so

ker(dFκ) = Tκ(S) TI(U(n)) = TI(O(n))⊕ TκS

and the symmetry sκ is given by the conjugation with κ, i.e. sκ(x) = κxκ. it fix κ and act as -I in Tκ(S)

since κvκ = κ(−κv) = −v.

ℜ.3 Transvections and Holonomy

Let γ be the geodesic segment connecting p and q such that γ(0) = m is the mid point, and extend
it to a complete geodesic. suppose X(s) is a vector field along γ, namely

d

dt
γ(t) = X(t)

then consider the vector induced vector field by the symmetry at m, γ̃(t) = sm(γ(t)) = γ(−t), then

X̃(t) =
d

dt
γ̃(t) =

d

dt
γ(−t) = − d

d(−t)
γ(−t) = −X(−t)

this means that the symmetry in m sm induced a vector fields mapping

dsm(X(t)) = −X(−t)
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then if we consider the composition of the symmetry at two different points, τ = sq ◦sm, then this isometry
will induced an vector field mapping following (if q = γ( l

2
))

τ(γ(t)) = γ(t+ l) dτ |γ(t).X(t) = X(t+ l) (18)

which means that this kind of isometry consisting of the composition of two symmetry is a parallel trans-
lation along the geodesic, such kind of isometry is called transvection along γ. this kind of transvections
form a one-parameter subgroup of the isometry group G. so we have the following theorem:
Theorem §1.1 Each complete geodesic γ of the symmetry space, is the orbit of a one-parameter
group of isometries, the transvections along γ, which act as parallel transports along γ.

ℜ.4 Killing Fields

Let S be a symmetric space and fix a base point p ∈ S. Let g be the Lie algebra of the isometry group
G of S viewed as the space of Killing vector fields. namely choosing a curve in G as g(t) with g(0) = I,
then the isometry acting on the base point forms a curve in S, γ(t) = g(t)(p), this curve induced an vector
field over S, which must be a killing filed X(t) due to g(t) preserve the length in S, all these vector filed
X(t) forms the Killing filed representation of the Lie algebra for the isometry group G.

Xp =
d

dt
(γ(t)(p))|t=0

as for the isotropy group at p, this induced Killing filed is zero at p since if γ(t) ∈ K, then γ(t)(p) = p

which is independent of t, so
Xp =

d

dt
(p)|t=0 = 0

so those Killing vectors satisfying Xp = 0 forms the lie algebra h := {X ∈ g;X|p = 0} of the isotropy
group at p, K = Gp.

we claim that
g = h⊕ p

where p := {X ∈ g; (∇X)|p = 0}, which is the space of infinitesimal transvections at p!
since for any geodesic at p with velocity v ∈ TpS, there is one parameter group of transvections for

this geodesic, labeled as gv(t) ∈ G, then this one parameter group induced a vector filed over S by the
curve γv(t) = gv(t)(p), so the Killing filed of this parameter group is

Xp =
d

dt
(γv(t)(p))|t=0

we have the derivative of V with respect to ω ∈ TpS is the infinite small parallel transport of the vector
field X along the curve defining ω, namely, if p(s) is a curve in S start at p with velocity ω, then

∇ωX|p =
d

ds

d

dt
gv(t)(p(s))|t=0,s=0 =

d

dt

d

ds
gv(t)(p(s))|t=s=0 =

d

dt
(dgv(t).ω)|t=0 = 0

since dgv(t).ω is the parallel transport of ω. this means that infinitesimal transvections at p are in p. since
a Killing field is determined by its value and first derivative at a single point. so h and p consists all of
g, since the first one has a degree of freedom on (∇X)p and the latter one has a degree of freedom on Xp

which cover all the cases and the dimesion also matches.
moreover, we have the following theorem about these algebra struture
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Theorem §1.2 Let S be a symmetric space and p ∈ S, let h be the set of Killing fields vanishing
at p and let p the set of infinitesimal transvections at p, i.e. the Killing fields with vanishing covariant
derivative at p. Then

[h, h] ⊂ h [h, p] ⊂ p [p, p] ⊂ h (19)

further, the map p → TpS,V → Vp is a linear isomorphism, and for all U,V,W in p, we have

(R(U, V )W )|p = ([U, [V,W ]])|p

where R is the Ricci tensor.

we can see this since if X,Y in h, since Xp = 0, we have ∇XY = 0, similarly, since Yp = 0, we have
∇Y X = 0, so we have [X,Y ] = ∇XY −∇Y X = 0 at p, this prove that [h, h] ⊂ h.

similarly, if V,W in p, then ∇V W = 0 since ∇W = 0,similarly, ∇WV = 0 since ∇V = 0 at p.so we
have [V,W ] = ∇V W −∇WV = 0 at p this prove [p, p] ⊂ h.

so we only need to consider [X,W ] = ∇XW −∇WX, since [X,W ]|p = −(∇WX)p which can be non
zero. so we only need to prove that ∇U [X,W ] vanishing at p. this can be achieved by using the Bianchi
identity and the properties of the Killing Field, we omit this tedious proof here.

ℜ.5 Cartan Involution and Cartan Decomposition

Theorem §1.3
a)Let G be a connected Lie group with an involution (order-2 automorphims) σ : G → G and a left
invariant metric which is also right invariant under the closed subgroup

K̂ = Fix(σ) = {g ∈ G; gσ = g}

Let K be a closed subgroup of G with
K̂◦ ⊂ K ⊂ K̂

where K̂◦ denote the connected component (identity component) of K̂. then S = G/K is a symmetric
space where the metric is induced from the given metric on G.
b)Every symmetric space S arises in this way.

comments: we get a decomposition g = h⊕ p, where h and p are the eigenspaces of σ∗ corresponding
to the eigenvalues 1 and -1
Theorem §1.4 A vector space decomposition g = h⊕ p of a Lie algebra g is the eigenspace decom-
position of an order-two automorphism σ∗ of g if and only if

[h, h] ⊂ h [h, p] ⊂ p [p, p] ⊂ h (20)

comments: this is simply the fact that

σ∗([Eλ, Eµ]) = [σ∗Eλ, σ∗Eµ] = [λEλ, µEµ] = λµ[Eλ, Eµ]
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