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§1 THE MECHANISM BEHIND THE FACE OF THE BOTT CLOCK]? ]

§1 The Mechanism behind the face of the Bott clock[1]

R.1 the relax of the homotopy to the reduced K theory

In physics, we consider the hamiltonian of different real dimension, if we require the translation
symmetry, then we can transform the whole hamiltonian to the Fourier space and we have the BZ, in each
point k of the BZ, we have H(k), and the occupied states forms a vector principle bundle over BZ, the
topological classification of the quantum matter is thus reduced to the classification of such bundles.

this is achieved by the K theory. strictly speaking, we should classify such bundle under the language
of homotopy, but it’s much difficult and we can simplify it by relaxing the notion of equivalence. this is
achieved from the reduced K theory in mathematics point of view and inspired from the physics intuition.

for example, the physical system with only one occupied band with Chern number n is not equivalent
to the occupied n bands with each band Chern number equals to one, because the Fiber bundle in the
previous case is rank one but the Fiber bundle in the last case is rank n, they can not equivalent in the sense
of strictly homotopy. but these two system will give us the same topological quantum hall conductance
in physics view of point. if we can relax the equivalence to that bundles of different ranks are counted
as equivalent if we can deform them into each other after adding suitable trivial bundles. then they are
equivalent, because we can add n-1 trivial bundle to the previous one and deform this to the latter one.
and this kind of equivalence is called reduced K theory and such bundles over base space X is denoted as
K(X). the following classification is in the sense of K(X), namely under the extended equivalence.

As for the base space, in physics we consider the base space to be torus, which is much complex than
the sphere, in the strong topological sense(higher enough dimension), there is no difference but in the

weak topological case(low space dimension), this may be different, we consider the case X to be sphere.

R.2 Bott periodic for the orthogonal group and unitary group
f .1 Altland and Zirnbauer’s Approach for BAG Hamiltonian

discrete symmetries 51, j2 - - - , denoted by s, when considering N dimensional system, the correspond-
ing N dimensional representation of these symmetries are N by N complex metrics, .J;, J5 - - -. we consider
the space of all N by N complex metrics representing the hamiltonian which has these symmetries(namely
all the complex metrics H satisfying [H, J;] = 0), this space is donated as H,, they find that for each given
class, H, is a symmetric space
Hs =G/K

and the hamiltonian iH is the generator of this symmetric space. see Appendix for more details about the
symmetry space.

we now show thier approaches in the following in more details to get the idea behind the construction
of these symmetry space[2].

the hamiltonian of the system can be written as

N 1 1
H= Z(hmchCQ + §Aa,chc£ + §A;B%ca)
a,B

ha,p = hj , since H should be hermitian. A, 3 = —Agz,, since this system is fermion system:
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we can write this hamiltonian in the BdG form with the particle-hole symmetry:

=2 ) " 8 ] + constant
=3 c,c A T o constan

b h A
- —A* —hT

where h is the part acting on the particle space(the state satisfying c¢f[p) = 0), and —h7 is the part acting
on the hole space( the state satisfying c|/h) = 0). we thus introduce a particle-hole symmetry of this
system, which is represented by P := X, := 0, ® I,y with o, act on the particle-hole space. with 2N the
total dimension of h, namely the range of index «, since there are N sites and there is spin in each site.

then we consider different symmetry constrains on this metrics.
Symmetry class D

since H is hermitian, which is not closed under the Lie bracket(so, it can not be the lie algebra of

some metrics groups), since
[A,B]' = BTA" — ATB' = [B, A] = —|A, B]

so we instead consider the X := ¢H, which is anti-hermitian, and closed under the Lie bracket. then the

constrain on the X can be summarized as
—XT=X=-%2,XT%,

then such bunches of X are closed under the Lie bracket. which is isomorphic to some Lie algebra of some

Lie group.In order to identify this algebra in the standard form , we can make a unitary conjugation of X
by
~UX'U'=UXU"'=-UL,X"8, U = -Ux, U UXxuHYuTs, vt

with the further requirement U~"f = U, US,UT = I so as to simplify the relation. since ¥, = 0, ® Iy,
b

C

a b 0 1 a c 2ab ad + be 1
= =] —>ab=cd= - ad+bc=0
c d 1 0 b d bc + ad 2cd 2

a b a* c*
< d )( )ZI—>aa*+bb*:cc*+dd*=1 ac” +bd" =0

so we can write U as ( ) ® I>,n and since then

c b* d*

from ab = cd = % and aa* + bb* = cc* + dd* = 1we have the relation that

1 1 el e
aa®™ = bb* = cc :dd:§—>U:ﬁ Jids J—ids

further from ad + bc = 0 and ac* 4+ bd* = 0, we have

Re(ei(¢1—¢3)) =0— ¢ — g = ig
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and we can choose that ¢, = 0 and ¢3 = 7 and we have

s 1 1 1
X = X =UXU; ! U0:ﬁ< , , )@IQN
1 —1

then the constrain becomes
X% _%T

this means that X is real and anti-symmetric 4N x 4N metrics, so it’s an element of s0(4N). the symmetry
space for this case is just

Sp = SO(4N)

from the Cartan’s maximal torus theorem, we know that X can be diagonalized by the Lie group element
g,namely

9gXg '=Q=0,®iw

which is diagonal, and g is the Lie group element defined by(which is isomorphic to SO(4N))

gt =g=3,97""%,
then, the hamiltonian can be written as

H= % > wa(vin —ml)
A
we have the particle-hole operator acting on the hamiltonian as
P(H)=UpH'Up' =-H - UpH"U,' = -H
so we have in terms of X=iH
UpiH'Up' = —iH — X = -UpX'Up"
so in this case , the particle hole operator is just P = 3, K and since then, we have
P=Y,K = P*=%,%=%2 =41
which is the same as the general definition of symmetry class D.
Symmetry class C

if we further require the system to be spin-rotation invariant, then we can derive this symmetry class.

we write the particle-hole decomposition of X as

A B
X:( o D ) X:Epp®A—|—Eph®B+Ehp®C+Ehh®D
then the constrain inherited from the —XT = X = -3, X7TY, is that

~At=A Cc=-B" B=-B"T C=-C" D=-AT

and then the generators of the spin rotations, are represented in this particle-hole space by

Jk = (Epp®0'k—Ehh®Ug)®lN
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since these three generators form the Lie algebra of su(2). then spin rotation invariant requires that

A B Uk®IN 0 Uk®IN 0 A B
C D 0 —oil @Iy 0 -0l @Iy C D

so we have
[A,O’k®IN]:O [D,U,{@IN]:O —BU?@IN:O}@INB CUk®IN:—O',{®INC

since —A" = A we can write A as ()\;0;) ® a, with \; be real number, so as that this constrain means that
—at =a.
besides [A4, 04 @ Iny] = 0 — [(M\ioi), 0] =0 —= A1 = Ay = A3 = 0, which means that

A=MI®a=I® (Ma):=1IR®a

by means of redefine a. and D = —AT = I ® —a”
since 0} = 04,0, = —0,,0! = 0., so if we write B as (A\jo;) ® b, then \;0; should commute with o,
and anti-commute with o,, 0, which means that A\;o; = A0y, thus B = Ao, ® b := 0, ® b, the constrain

BT = —B implies b = +b" and we have C = —Bf = oy ® —bf. so the metrics has the following form

a 0 0 —ib
0 a ib 0
X = 1
0 ibf —aT 0 W)
—ibf 0 0 —a”
if we absorb the complex unit i into the metrics b and define b = —ib, then the constrain on b is also
b" = b and we have
a 0 0 b a 0 0 b
Y 0 ‘ —b 0 I U —b 0
0 b —a” 0 0 —c —aT 0
bt 0 0 —a” c 0 0 —a”
where we have define ¢ = fl;T, we can find that in this case, the hamiltonian reduced to two commuting

part, which is isomorphic, namely,( we write b as b)

a b a —b
X = P

so we can just consider one block, we consider the first block, which consists of spin-up particle and

spin-down holes, we write it as

constrains are

which give constrain on the block as

X=X =-3,X[%, %,=0,0Iy
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since the lie algebra elements of Sp(2N) = U(2N) N Sp(2N, C) satisfying
—XT=X=JXx"J J*=-1

then we can find that i3, = i0, ® Iy serve as the role of the standard J. which means that X, is the

element of sp(2/N). so the symmetry space in this class is
Sc = Sp(2N) (2)
in this case, the reduced particle-hole operator in the half block space is
P=%,K—-P'=%,% =-%2=—1

which is the sam as the general definition. we should further notice that from calls D, we add a spin-
rotation symmetry, then the whole space reduced to two commuting and isomorphic block, then on just
one block, the effective particle hole operator has the property of the class C. in this formalism, we derive

symmetry class C from symmetry class D.
Symmetry class DIII
in this case, we should consider the time-reversal symmetry, since T act in H as
T(H)=UrH*'U;' =H - UprH'U;' = H
we in terms of X=iH, it should be
UriHTU ' = iH — Up XTU ' = X

so with further, time reversal symmetry, we have Ur := 7 = I, ® ic, ® Iy, where the tensor product act
on PH-Spin-Sites space.
—X'=X=-35,X"%, =rX"r7"

1

since the set satisfying the relation X = 7X777! is not closed under Lie bracket due to the simple fact

that
(X, Y] =7XTr"7YTr — 7Y T 2 XTr = 17X, Y]'r

but we know 72 = *£1, so 7 is order two automorphism, so we can separate the space into the +1 eigenvalue

space and -1 eigenvalue space , namely,
X=X,8X_ X,=7X{7" X_ =-7X'77"
and the vectors with the latter property is closed under the Lie bracket
(X_,Y =X 7YT'r — YT v Xt r = —7[X_ Y "7

so these vector forms a Lie algebra of some Lie group, we denoted it as the space IC, with the following
constrains
X' =X=-3,X"8, = —7X"7"!

since the space of the following constrain is so(4N),

—Xt=X=-%,XTy%,
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the desired space with time reversal symmetry, denoted as P, with elements X satisfying
X' =X=-2.X"y, =rX"r"!
is the complement of K over s0(4N), namely
s0(AN)=Pad K
so we only need to identify the Lie algebra IC,the equations define this space is
“X'=X=-%XT%, = —7XTr!

since we can use time reversal and particle hole symmetry to form a unitary transformation, we can modify

this by noting that
XT= 7' X7=—-7X1' 25 X=X =-3,XT%, = 5,7X(,7)*
we can make a unitary transformation to simplify the last relation
U XU =U'XU = -U 'S U U XTU Y UTs, U = U Y (S, n)UU ' XUUH(2,7)"'U
by require that U~! = Ut U2, U1T = ey, U1 (2,7)U = '*%, then the X = U~' XU satisfying
-X'=X=-5X"%, =5.X%,

where ¥, =0, @ L, ® IN,X, =0, ® I, ® Iy. in oder to establish this , the constrain on U is(we can write
Uas A® B® Iy)

Ut=Ut
¥, = Uz, U”
(2,7)U = €e?Ux,

A B

if we write U =
C

), then (X,7)U = e"?UY, implies that

ioc,C = €A  io,D=—e’B ioc,A=¢e’C io,B=—e"’D
this implies that —e?*® = 1 so €' = i and we have
C=0yA D=—-0,B
then ¥, = e?UX,UT implies that
AB" +BA" =0 CD"+DC"=0 AD"+BCT =¢€"*
inserting into C and D by A and B, we have
ABT + BAT =0 AB" - BAT = ¢, — ABT = %e%y

from U~! = UT, we have
AA'+BB'=1 AC'+BD'=0
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also by inserting C and D by A and B, we have
1
AA"+ BB =1 AAT—BBT:0—>AAT:BBT:5

then we have BT = ¢ AT, —+ B = —eo,A*, these are all constrains, so we can choose A = %I and

—e =i, then A=I and B = %iay, then U read as

1 IQ in
U=— ®I
\/i ( O'y 77/_[2 ) N

so in conclusion, under the U conjugation, we have the equations for the elements in
Xt =X=-3XT8, =%.X¥,

A B
C

Aot N\ (a4 BY (D B\ ( A -B
gt ot )] \ ¢ D) \ ¢t at ) \ —¢ D

this means that B=C=0 and D = —AT and —AT = A

_ A
X= 0

then it’s obviously that this metrics consists of two isomorphic commuting block, and each block is

if we write X = < ), this just means that

determined by an anti-hermitian metrics of dimension 2N. so this Lie algebra is isomorphic to u(2N),

which mean that = u(2N). and we have the symmetry space for this class DIII is just the space
Sprir = SO(4N)/U(2N) 3)

we can see that P? = +1 as before and T? = io,Kio,K = (ic,)> = —1, which is the same as that in the

general case.
Symmetry class CI

in this case, we proceed as adding time reversal symmetry to the spin rotation invariant system.since
after considering the spin rotation invariant, the whole system reduced to two isomorphic sectors and in
each sector , the Particle hole symmetry satisfying(P? = —1)

~-X!=X; =-3,X['3%,

time reversal symmetry acting on the spin- space, and under this one sector X, it should be act as the
identity effectively, so the constrain after considering time reversal symmetry, the whole requirement is
that

Y=y =-%,Y%,=Y"T

we donate the space of metrics satisfying above as P, due to the same reason that P is not closed under
the Lie bracket,
X,V =YTXT - XTYyT = —[X,Y] # [X,Y]
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so it can not be the Lie algebra of some Lie group, instead, we consider it’s complement on the Lie algebra
of sp(2N) which we identified before:
Y=Y =-%,Y%,

since time reversal is oder 2, the complement should be the space with the -1 eigen-value, namely, the
elements in space K satisfying
Yi=y=-3,Y%,=-Y"

similarly, we then try to identify this Lie algebra K.

from —3,YY, = —Y7, we know that it should be commute with ¥, so it can be written as
Y=L®A+0,®B

—YT =Y requires that AT = —A, Bt = —B)Y = —Y 7 require that A = —A”, B = BT so have that A is

real and anti-symmetric but B is purely imaginary B = ¢C' with C symmetric
Y=LA+0,@B=Y =L A+io,®C

since an anti-hermitian metrics X satisfying that it’s real part is real anti-symmetric and it’s imaginary

part is real symmetric, so we have
Y =1, ® Re(X) + io, ® Im(X)

with X anti-hermitian (N x N) metrics, so we find that Y is isomorphic to anti-hermitian metrics space
by identify the new complex unit as io,.
this shows that K = u(N). so the system with both time reversal symmetry and spin rotation
symmetry is P satisfying:
sp(2N) =P S u(N)

so the symmetry space in this case is just

Sci = Sp(2N)/U(N) (4)
and we have the effective P? = —1 and 7% = +1 in the spin up sector X4, which is the symmetry class
define the class CI in general case.
$.2 Symmetry space construction from the extension of Clifford Algebra

Why Clifford Algebra : The general idea and arguments on symmetry operators

For the real case, if there is no extra symmetry, we can start from a continuous space O(16r), we
begin from this since it’s the biggest space with real entries. because the we regard the hamiltonian as
the generator of the Lie groups, so the hermitian naturally requires that X = ¢H is anti-hermitian, which
can be regarded as the Lie algebra of O(16r).

then we add symmetry constrain on the hamiltonian, in the lie algebra level, it should be some metrics

J; represent the symmetry, satisfying

X=FJXTJ=+JXJ J?>=+1
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since X7 = —X, and the + sign in the first place represent the time reversal symmetry, - sign represent
the particle hole symmetry. in the Lie group level, this relation should be the constrain on the metrics in
O(16r) satistying

OoTjo=J—=X=JXJ if J’=+41 OY'JO=J->X=—-JXJ if J?>=-1

in the following, we consider the case J2 = —1 at first, then the symmetry constrain on Lie algebra level
is
X=—-JXJ—=[J,X]=0
since J? = —1, the subset satisfying the above relation is closed under the Lie bracket, which means that
the constrain on the Lie group level
oTJjo=1J
will give us a new Lie group out of the previous one after we add a new symmetry. suppose after adding
a Ji symmetry, we derive a new Lie group G; by the previous argument. then we want to add a new
symmetry Jo, there are two kinds of choice since J; is an order two mapping, namely, J5 lie in the +1
eigen-space or -1 eigen-space of J;
Jo =tJ1 oy

since J2 - %(JQ + J1J2J1> + %(JQ — J1J2J2> and

1 1 1 1
(et Jidedt) = g (ot JiJe) Ty 5 (2 = Jidoi) = =i (Jo = JrJe)

if we choose J, satisfying J, = —J;JoJ1, which means that J; lie in the Lie algebra of Gy, Jy € Lie(Gy),
which may not be in a symmetry space. we want to consider the case that the choice of J; Lies in a

symmetry space, so we consider the case that
Jo = +J1doJ; = J1Je = J12J2J1 =—JyJ; — {Jl,JQ} =0

then the Jo lies in the Lie algebra of G/G;, which is a symmetry space, and this process is just the
consideration of the Clifford Algebra extension from €I, o to €[, 11 o, from this extension process, we can
derive the symmetry space, and consequently, the symmetry class!!!

in conclusion, we at first consider a set of symmetry operators being the basis of the Clifford Algebra,

namely
{Ji, J;} = =26, ;1

The symmetry space sequence from the extension of Clifford Algebra

1. with the above argument in mind, we consider what we derive after we add a single J;.we can choose

Jy =ioy, ® Ig,, then the constrain on O(16r) in the Lie group level read as
OTJlO - Jl

if we write O = A ® B, this means that A” ® B (io, @ Is,)A ® B = io, ® I3, since OTO = I, we
have

(o, ® Is,) A® B =A® Blio, ® Is,)

so we have [io,, A] = 0, which means that the real metrics A should be the form A1 + \yio,. so the

group G after adding J; is the elements of O(16r) with the following form

(MI+ Nio,)®@ B BTB=1 (M1 + \io,)T (AT + Agio,) = AT+ 23 =1
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so we can regard ¢, as the new complex unit in this space since it commutes with the elements
of G; and square to -1, so (A + Xsio,) is isomorphic to the new complex number , since then
(M1 + Agioy) ® B means the complexity of the real orthogonal metrics B, which we derive the U(8r)
group, so we derived that Gy = U(8r),mathmaticallly

U(8r) =2 O(16r) N Sp(16r, R)

. what happens if we add a new symmetry Jy, since J? = —1 and it anti-commute with J;, we can
write it as
Jo =0, Qioy Q Iy

from the above argument, we can write the elements in Gy as (A I + A\qio,) ® By @ C
J20 = 0Jy = (M1 + \ioy) @ By ® Co, ®i0y @ Ly, = 0, ®i0y ® Ly (M1 + Asioy) ® By @ C
which means that
()\1[ + )\Qin)UZ X Bliay = O'Z(>\1[ + /\giO'y) X inBl

the solutions are

M=0 By =po,+ 20,

)\2 =0 Bl = ,LL1[ +M2i0y
so we have the ()\1[+>\220y)®B1 = )\2i0y®(/1,10'z +,LL20'Z) or ()\1[+)\220y)®31 = )\1I®(M1I+M220y),

in general, we can write it as their combinnation:
(MI+ Nioy) ® By =al @ I + bl ® ioy + cioy ® 0, + dic, Q@ 0,

since the basis

I®I1,1IR®i0,,i0,® 04,10, @0,

form the basis of the quaternion, because the latter three squares to -1 and follow the algebra of
ij = k = —ji etc. so the elements of (AI + A\sio,) ® By ® C' is just the quaternization of the real
orthogonal metrics C, and from OTO = I, it should be the elements of U(4r, H), where H represent

the quaternion numbers. mathematically:

G2 =U(8r) N Sp(8r,C) := Sp(4r) = U(4r,H)

. what happens if we add a new J3, there are different cases, which resembles the different cases of
the metrics K = J;J>J3, since K commute with Jq, Jy and squares to +1. So, it can be diagonalized
within the real metrics due to the fact that it’s eigenvalue is either +1 or -1 which is real. the

elements in G3 must satisfying
OTKO = OTJlOOTJQOOTJgO = J1J2J3 =K — [K, O] =0

so we can use the basis where K is diagonal, namely, the vector space Vi which correspond to the +
eigen-space of K. then O must be block diagonal since [K, O] = 0, it can not change the eigen-space

from V, to V_. then Ji, J> in each eigen-space give us a quaterinion structure by requiring that

0, 1] =10,J2] =0
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80, the group which commutes with Ji, J5, J3, which is the same as the group which commutes with
Ji, Jo, K should be the group

Gz = Sp(ny) x Sp(na)  ny+mng =4r
in the following, we use the explicit form of J3 to give us the concrete example of this directly. since
J1 :’in@IQ@IQ@IQ, J :O'Z®(20'y)®[2®[2
so one choice of Js is J3 = 0, ® i0, ® Is ® I5. since the elements of the form ol ® I 4 bl ® iy +
cioy ® 0, + diocy, ® 0, ® B® C' is already commute with J3, since

I®I,0,Ri0,)=0 [I®ioy,0,®i0,=0 J[io,®0,,0,Ri0y]=0 [0,®0,,0,Ric,] =0

so in this case, the group Gj is the same as the group Go = Sp(4r), this is the fact that

K= J1JyJ3 =i0,0,0, ® (io,)> =1 ®1
only has +1 eigen-space and so that n; = 4r and ny = 0, so that

G5 = Sp(n1) x Sp(ng) = Sp(4r) x Sp(0) = Sp(4r)

another choice of J; is that J; = 0, ® i0, ® 0. ® I5. then we can write the elements which commute
with Jy,Jo as al ® I + bl ® ioy + cioy @ 0, + dioy, ® 0. ® B ® C, the further requirement that it

commute with J3 is that

((al @ I +bl ®ioy, + cioy, ® 0, + dioy, ®0,) ® BR C)(0, ®io, ® 0, ® Iy)
=(0, ®iocy @0, @) ((al ® I+ bl ®ioc, + cioy, ® 0, + dio, ®0,) @ B® C)

which means that

(a0, ®iocy —bo, @I —co, ®o, +do, ®0,) ® Bo,
= (a0, ®ioy —bo, ® —co, ®o, +do, ®0,)Q0.B
which mens that B is commute with o,,s0 B = A\ I + \yo, = diag{p1, 2} so we have (al @ [ + bl ®

ioy + cioy ® 0, +dioc, ®0,) ® B® C can be written as two diagonal block with respect to B, in each

block, it’s a group isomorphic to Sp(2r) since it’s a quaternion over a real orthogonal metrics C.

so we have

G3 = Sp(2r) x Sp(2r)
in this case, K = J1JoJ3 = i0,0,0, ® (i0,)* ® 0, = I ® I ® o, which has equal number of +
eigen-values, so that n; = ny = 2r

Gy = Sp(n1) x Sp(na) = Sp(2r) x Sp(2r)

in the last, let’s consider the case where K is not diagonal, namely, consider the case J; = 0, ® 0, ®
(ioy) ® I5 then K is

K =ioy0,0, ® (i0,0,) ® i, = —io, @ 0, ® i0y

similarly, we have

((al @ I +bl ® ioy, + cioy, ® 0, + dio, ®0,) ® BRC)(0, ® 0, ® (io,) @ 1)
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=(0, ® 0, ® (ioy) ® I)((al @ I + bl ®ic, + cio, ® 0, + dio, @ 0,) @ B® C)
which means that

(a0, ® 0, —bo, ® 0, + co, ® o, —do, ® I) ® Bio,
=(ao,®0,+bo, ®o, + cop ®ioy +do, ® 1) ®ioc, B

the solution is that

a=c=0 B =0, + p0.
b=d=0 B=M\I+ \ioy,
which mean that it belongs to
(bI @ ioy + dioy @ 0,) @ (U104 + p20,) + (al @ I + cioy @ 0,) @ (M1 + Agioy)
so the it’s an linear expansion of the following eight basis

IQicy, o, IQ®ioy,®0, 10,Q0,R0, 0,Q0,R0,
IlIel 1®lI®ic, 0,00, ioy,®0,Ri0y

there are two elements which square to +1, namely I ® I ® I,i0, ® 0, ® iy, this two also commute

with all the others.the remaining six are square to —1

in order to find the two quaternion structure, we label 1 = I ® I ® I, e = 0y ® 0, ® 10y, and

1=1®1I®ioy,, j=1®i0,®0,,and k =ij = I ®io, ® 0, then we have
0, ®0, R0, =ex (I ®—io, ® —0,) = ek

io, 0,0, =ex (I®—ic,®0,) =—ej
ioy,®0.®1=ex(I®I® —io,) = —ei

then the above eight basis can be written as

so we can use the following to be the new basis

%(He) %(1+e)i %(He)j %(1—#6)/{:
1 1 1 o1
5(1—e) 5(l—e)z 5(1—6)] 5(1—6)]{5

we choose this basis for the reason that it’s easy to show that the above line commutes with the

latter line since
(1+e)(l—e)=1—-e*=1-1=0

in the basis where K is diagonal, we have ¢ = —K which is diagonal with diagonal elements either

1
2

should commute from this kind of view.besides (1 + e) and (1 — e) are constant metrics, so we

1or-1,s0 =(1+e) and %(1 — €) just means the projection to the +1 and -1 eigen-space, so they

can easily see that expansion of these basis are isomorphic to the quaternions number. since the are
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commuting, so this group tensor product with C are isomorphic to Sp(2r) x Sp(2r) if we further

consider the orthogonal condition and that C is two dimensional orthogonal metrics.

. in order to add more such J; and proceed advance, we choose the case that n; = ns, so the Lie
group G is
G35 = Sp(2r) x Sp(2r)

and for simplicity, we choose the J; to be J3 =0, ®ic, ® 0, ® Iy so0as K =1 ®1® 0, ® I, to be

diagonal, and the elements of G5 be of the form
(al ® I+ bl ® ioy + cio, ® 0, + dicy, @ 0,) ® diag{p1, po} @ C

together with the condition that it’s orthogonal. if we write h = al @ [+bl ®io,+cio,®0,+dic, R0,
d = diag{pi1, o}

. To advance further, if we add a J4, we can consider that L = J3J;, which commute with J;, J; and

anti-commute with K = J;J5J3 since
LK + KL = JiJyJ3J3Jy + J3JyJ1Jods = —J1Jody + J1Jady =0

L? = —1, then suppose v, is a vector with +1 eigen-value for K, then KLv, = —LKv, = —Lv,,
which means that L transfer the V, to V_, since the orthogonal metrics commuting with Jy, Jo, J3
is block diagonal in the basis V. @& V_, then when further commuting with J,;, which is the same
as L, which should be the form of o, or io, in this basis if we properly organize this basis, so we

have(L? = —1 and we choose the standard form of L = io,)

H, 0 —H, 0 H, 0
L L == = —
0 H2 0 *Hl 0 H2

so Hp should be the same as Hs. the the group surviving should be the diagonal elements of Gj,
namely G4 = Sp(2r) x I = Sp(2r).

more pratically, if we choose Jy = 0, ® io, ® (—0,) ® I, Thus
L= (0,® (ioy) @0, ® 1) (0, Qio, ®(—0,) @) =1®1Rio,
the elements of G3 commute with this Jy, requires that

((al @ I +bl ® ioy, + cioy, ® 0, + dio, ® 0,) @ diag{p1, p2} ® C)(0, ® ioy, ® —0, @ I5)
=(0, ®ioy ®@ —0, ® I1)((al ® I 4+ bl ®io, + cioy, ® 0, + dicy ® 0.) ® diag{u1, p2} ®@ C)

which means that

(a0, ®iocy —bo, @1 —co, ® o, +do, @ 0,) @ diag{p1, pa2}o,
= (a0, ®ioy —bo, @ —co, R0, +do, ® 0,) @ oydiag{p, pa}

so we must have o, commute with diag{su1, 2}, which can happen when p; = po, so diag{p1, po} =

ul which is diagonal, then the elements of the form
((al @ I +bl ®ioy, + cioy, ® 0, + dio, R 0,) @ ul @ C)

consisting the group Sp(2r) when consider that it’s orthogonal.

finally, we have G4 = Sp(2r), anyway.
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5. if we further add an extra Js, we can consider M = J;JJ5, which is commute with K = J;J>J3 and
squares to +1. so it can not mix the eigen space of K, namely V., and V_, since M so we can choose

the basis in V, and V_ in which M is aslo diagonal.
V+ - V++ @ VJrf V, - Ver @ V,,

where the second sign label the eigen value of M which should be +1 or -1

since JoM = —MJy, J1M = M Jy, so we must have JoV1 . = V4 _, with this in mind the extra J;
makes the the quaternions (al ® I +bl ®io, + cio, ® 0, +dio, ®0,) into two diagonal part according
to the eigen-value of M, and they are related by .J5, this is equivalent to remove a complex structure

from the quaternions, so G5 is isomorphic to U(2r)
more practically, if we choose J5 = 0, ® 0, ® i0y ® I5, then the extra constrain that OJs; = J50
should be the constrain that

[al ® I + bl ®ic, + cioy, ® 0, + dioy, R 0,,0, ® 0,] =0
which means that b=c=0, so the elements is of the form

(al @1+ dicy,®0,)@ul ®C

consisting the the group U(2r) if we use the complex unit as io, ® o, and after considering the
orthogonal constrain.
in conclusion, we have

G5 = U(?T’)

6. if we add an extra Jg, we can consider N = JyJyJg, which commute with K and M and squares to
+1, so it act within V4 4, then we can choose the basis again which N is also diagonal, so the space
can be divided into

Vie=Viqi ®Veq_

where the last sign represent the eigen-value of N. since J;N = —NJj, so each space is related by
J1, namely, J1Vy 4+ = Vi 4 _, since then, this is equivalent to remove a complex structure in Gjs,

which makes Gg isomorphic to O(2r)
more practically, if we choose Js = 0, ® I ® 10, ® I, then N = JoJ4Js = 0. ® I ® 0, ® I5 is diagonal.

then the extra constrain is
((al @ I +dio, ®0,) @ ul @ C,0, ® I ®ioc, ® 1] =0
thus we have d=0, so the form of the elements in Gg is
(alI)@ul®C
which is isomorphic to O(2r) when consider the orthogonal constrain. thus resulting in

GG = 0(27")
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7. if we further add a J;, we can consider P = J,JgJ7, we have
[P,K]=0,[P,M]=0,[P,N]=0
and P squares to 1, so we can choose the basis where P is again diagonal, then
Vigr =Vea a1+ OVia s

where the last sign represent the eigen-value of P. Thus the extra constrain will put Gg into two
diagonal part, so we have
G7 = O(nl) X O(’rlg) Ny + no = 2r

more practically, if we choose J; = 0, ® 0, ® i0y ® I, then this will give us no more constrain, so
G7 = Gg = O(2r), this is due to the fact that

N=JDJgJ;=—IQIRI®I
only has eigen-value with -1, so n; = 0,ny = 2r, which makes that
G =0(0) x O(2r) = O(2r)

another choice is J; = 0, ® 0, ® i0y ® 0, then the extra constrain is that C = A ® D, where D is

metrics in r dimesion and A is 2 dimension.
[A,0.] =0
which means that A = A\ I + A0, = diag{a, b}, then the elements of the form
diag{a,b} ® D
is isomorphic to the group O(r) x O(r). in this case, we have
N=hJsJi=-I®I®IR0,

which has the same number of +1, —1 eigen-value, so ny =n, =7r

G7 = 0(ny) x O(nz) = O(r) x O(r)
in oder to make the whole process keeping advance, we choose this one.

8. finally, if we add an extra Jg, we can consider () = J;Jg, which commute with K,M,N and anti-
commute with P, so it maps Vi + 4+ 4 to Vi 1 4 _, this means that only the diagonal entry in G7 can

survive, namely, Gg = O(r).

more practicaly, if we choose Jg = 0, ® 0, ® ioy ® 0, then the extra constrain is
[diag{a,b},0,] =0

so we must have a=b, then the elements of the following form

al ® D

is isomorphic to O(r) when considering the orthogonal constrain. what happens if we add more J;,
since Clgis0 = M(16) ® €lgo. so the extra constrain will be like just an J; adding to O(r), which

will comes to a second cycle as above.
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in conclusion, we have

.0(16r) B3 U(8r) B Sp(4r) B Sp(2r) x Sp(2r) 3 Sp(2r)
Js
D)

Js J Js
U@2r) 3 0@2r) 3 0(r) x 0(r) S O®r) - - (5)
and one kind choice of such symmetry breaking operators is

Ji =0y, @1, @1, @1, ® I,
Jr=0.Qic, @, QX I,
J3=0,Ri0,R0, L1,
Ji=0,®i0,00, 91,1,
Js =0, 00, ®ic, I, ® I,
Jo=0, 01, ®ic, ®1, R I,
Jr=0,Q0,0i0,Q0, 1,
Jg=0.00,Qi0y®0, I,

together with the operators to separate the space into commuting blocks:

K=hls=LolLeo, Ll
M=nhJJs=-1Lo, 0, 1KI,
N=JJyJs=0, L0, 31K I,
P=JJgJr=-L®Ro,LQ0,1,

and operators which relate two different diagonal blocks

L=JsJy=-1L®L®ir,®I, I,
Q=JiJs=-LeL&I1Leio,l,

in the above formulism , we choose a specific symmetry breaking operator and then to derive the groups
with the specific symmetry constrain. At present, we try to consider another question, what’s the degree
of freedom of choosing these symmetry operators?

namely, if we have .Jy,.Jo,--- ,J; choosing, what’s the space for choosing .J;;; which is square to -1
and anti-commute with Jy, Js, - -, J;, This is equivalent to consider the extension of Clifford algebra from
Clio to €l in O(16r), we denote the space of choosing this generator J; ;1 as R;4» and the group
which commute with Jq, Jo, -+, J; in O(16r) as G;. . Things seem to be quite hard, since we have less
knowledge about this extra generator. But it will become clear if we try to figure out this space with
another isomorphic space with the help of a pre-founding specific Jﬁrl, namely, suppose we have already
have J2,; € R;;1. then we donote the group which commute with Jy, J, - -+, J;, J2; in O(16r) as Gi4q.
since we have

Vg € Gi (90197)* = g(Jln)?g ™ = g(-1)g7" = —1
Vg € Gi,gJ?Hg*le + Jngng*le = g(JiOHJk + JkJiOH)Q*l =g0g ' =0

this is to say that for all g in G;, the conjugation of Jﬁrl by g lie in the space R;.1, so the space R;;1 may

be just the space of the orbital J?,; under this conjugation, since the G;41 C G; makes J?,, invariant,
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this orbital is isomorphic to the group G;/G;11, so we have
Ri+1 = Gi/Gi+1

in symmetry space language, G; is the isometry group of R;1; and G, is the isotropy group of the specific
elements JZ-O+1 € R;11. In the following, we show that G;/G,,; is a symmetry space. so we consider the

Lie algebra of G;, donated as g;, since we have for any g € G;

Teag Tl e = =gk i = =T kg Tl = BeJag i

3

thus J?,,gJi;," € Gi, saying conjugation by J,, is an transformation on G, besides, Ji;; = —1, so this
is an order two isometry, so it is an involution and the fixed group of this involution is G;,1, since it
commute with J?, |, so G;/G;41 is a symmetry space (see Appendix for details if need).

besides, this involution induced an isomorphic of the Lie algebra of G;, this algebra is divided into

two parts, one of which is the +1 eigen-space of this involution:

T X I = Xy

(3

another one is the -1 eigen-space:
0 0,-1
Jign X Ji =Xy

we can find that X, is just the space of the lie algebra g;,1 of G;11. so we have

g =0gir1Omy

they satisfy the algebra of the tangent vectors of the symmetry space due to the fact that the they are

41, —1 eigen-space correspondingly:

@41, 8i41] C Gip1 [Miy @iy Cmy [my,my] C gipa

so the tangent space of R; 11 = G;/G,+1 consisting of the elements, which belongs to the -1 eigen-space of
this involution, namely, it commutes with Jy, J5--- , J; and anti-commute with J?H. the connected part
of G;/G,11 is Exp(m;) and the isomorphic map between R;,; and G;/G;1 in this connected part is given
by

99t =T e
where H € m; which commutes with Jy, Js - -+, J; and anti-commutes with JiOH, so we have the following

sequence with symmetry space labelled:
... O(167) I‘é U(Sr)§ Sp(4r) }‘é Sp(2r) x Sp(2r) I‘é Sp(2r)
5 U(2r) 3 0@2r) 5 0(r) x 0r) 3 Or) 6
2 U@r) 0 0@r) 5 O(r) xO(r) p O(r) - (6)

where the lower symmetry space means that the space of choosing the above generator, for example, R,
is the symmetry space of choosing J3, namely, the extension from €I, , to €I;
the above is the whole story of the case where J? = —1, then what happens if we require J? = +1,

in this case we use E; to replace .J; in order to remove chaos of marks.

1. if we add a single E; to O(16r), since E? = +1, we can choose the basis to be the elements of +1

eigen-space Vi of 1, then F; is diagonal, so the constrain

OE1 - ElO
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will separate O into diagonal two blocks, so the group G; is
Gl = O(nl) X O(’rlg) ny +ng = 167
for the purpose that this sequence can advance, we choose the case where n; = ny = 8r, namely

Gy = O(8r) x O(8r)

. if a second one E5 goes into the problem, since E1Fy = —FE3E;, so E1V, = V_, so if we further
require
OEQ = EQO

O should be reduced to the diagonal elements of GG;, namely

G2 = O(ST) ®I2 = O(ST)

. if we further add more F;,i > 2, we can consider the elements J; = F;FyF;,which commute with
both F; and F, since

JiE1 = E\FEyE By = —E\EsFVE; = E\E By E; = EyJ;
JiEy = E FyE Ey = —FE FEyEoFE;, = ESyE By E; = EyJ;
further more we have the anti-commuting relations between J;:
JiJy = F1Es B, E\EsEy = E1EsE\EsE By = —FV\EsEy By Es By = —Jy J;

since J? = (E1F2E;)> = —1. so adding k+2 E;’s to constrain the group O(16r) is equivalent to
adding just k J;’s to the group O(8r), This is the result from the Clifford algebra isomorphic

Clo iz X ClLERClyy  Clyy X R

and Cly o is removed by considering F;, E>. since we have work out the case where J? = —1, so
we have done all the sequence: ( since we care about the case r is large enough, so to identify the
symmetry space R;, we only care about the two groups, not the dimension because we can choose

proper r to make the dimension mathces)
... O(167) ; O(8r) x O(8r) g O(8r) fg U (4r) §> Sp(2r)
Es Es E Es
B Sp(r) x Sp(r) 5 5p0) 5 U(r) 5 0r) - (7

using the sequence of adding J; and F;, we can derive the case with general p J; and q F;, namely,
adding a Clifford algebra €1, ,, we consider the special case when adding one E and one J at the

same time.

since E2 = +1, we can use the basis where E is diagonal, so the constrain
OF = EO

reduce the group to the diagonal blocks. secondly, since EF = —FE, F convert V to V_, so the
constrain

OF =FO
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make sure the two diagonal blocks are the same, so under considering two such symmetry operators.
the group survive is the same as before but with the dimension reduced to half of the previous one,
for example

U2r)—U(r)

This is the result of isomorphic between Clifford Algebra:
¢[qu = Q:[;D—l.,q—l & 6[171 Q:[l,l =~ R2X2

since we can choose the dimension properly, so we can just say it has no effect on the group. due
to this reason, the group survive after adding €I, , is the same as the group surviving after adding
Cly,q—p or equivalently €l,_, . if we consider the space to adding an extra negative one, namely,
J;, upon the space we derived where we have already adding p negative and q positive one.we
have degree of freedom of choosing this extra lies in the space R, 442 by using the isomorphsim
el = ®9€L 1 @ Cl,_q0 and the sequence (6) or equivalently , in the language of Clifford algebra
extension:

J.
Q:[p,q £>1 Q:[p+1,q

p—q+2
if we consider to adding an extra positive one, the degree of freedom of choosing this extra positive
one lies in the space R,_, by using the isomorphsim €I, , = ®PCl; ; ® €y ,_, and the sequence (7)

or equivalently , in the language of Clifford algebra extension:

J, +1
Qt[p,q Rq:> Qt[p,q-i-l

in the last, we consider the case with unitary group U(2r), in this case, if we add an J; and require
UJl — JlU

what can survive in this case, since the complex entry of the metrics is allowed for complex unitary metrics,
we can always choose the basis where J; is diagonal whenever J? = £1. then the constrain will make U

into two diagonal blocks, so the group survive is just
G, =U(r)xU(r)

when adding an extra J,, since JoJ; = —J;Js, the extra constrain will only make only the diagonal part
allowed, since then

GQZU(T)

thus we get the sequence for the complex unitary group and the complex Clifford Algebra extension:

U2 23 U(r) x U(r) ;3 Ur)--- ®)

f .3 Properties of these symmetry space

there are four main properties about these symmetry space, in this section, we try to explain them

in details.

1. the symmetry spaces derived above serve as two roles, one of which is inspiring from the Altland

and Zirnbauer’s Approach, that is:
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the hamiltonian with specific symmetry lie in the tangent space of these symmetry space.

for example, if H possess the particle-hole symmetry with P? = +1 then X=iH form the Lie algebra
of SO(4N), which is also an Lie algebra of the symmetry space

R, = O(4N) x O(4N)/O(4N) 22 O(4N)

if H possess the particle-hole symmetry with P? = +1 and the spin rotation symmetry, then the
effective spin-up block of H has particle-hole symmetry with P? = —1 and X; = iH; forms the Lie
algebra of Sp(2N) which is isomorphic to the symmetry space

Rs = Sp(2N) x Sp(2N)/Sp(2N)

if H possess the particle-hole symmetry with P2 = +1 and Time reversal symmetry T2 = —1, then
X=iH form the Lie algebra of SO(4N)/U(2N), which is also an Lie algebra of the symmetry space

Ry = O(4N)/U(2N)

if H possess the particle-hole symmetry with P? = +1 and Time reversal symmetry 72 = —1 and
spin rotation symmetry, then the effective spin up block Xy = iH4, and this effective hamiltonian
has symmetry with P? = —1, T? = +1 since we only consider the one spin block, and it forms the
Lie algebra of Sp(N)/U(N), which is the Lie algebra of the symmetry space

Rg = Sp(N)/U(N)
2. on the other hand,
the symmetry space serve as the classification space of the fiber bundles over the base space

for example, the classifying space of all rank N real-vector bundles is just the real Grassmannian
Gn(RN*T™), since we can use this classifying space to construct the tautological trivial bundles and

any vector bundles is a pull back of this bundle, we have
Ry = O(N +m)/(O(N) x O(m)) = Gy (RN+™)
so the symmetry space also serve as the classifying space of some kind of Fiber Bundles. and the

classifying space is uniquely determined by Groups acting on the Fibers of these Fiber Bundles.

in the above example, the Group acting on the Fiber is O(IN), and the the classifying space is

uniquely determined by it as

Ro = lim O(N +m)/(O(N) x O(m)) := BO(N)

m—r o0

since classification of such fiber bundles is equivalent to find the homotopy groups of the classifying
space by pulling back using this homotopy group element [X, R]. so it’s important to figure out
these homotopy groups.

3. if X is S™, such groups is donated by m,(Rs), and we have

Tn(R) = Ty (Ri—q) 9)
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this can be proved by showing that the loop space of R;, donated as QQR;, which is isomorphic to

R, for any i and thus we have
7T7L<Ri) = ﬂ—n(QRi—l) = 7T7L+1<Ri—1)

in order to achieve this, we consider the element A; = J[lJiH in the following context

J; Jit1
Gi-1 O G O Giya

Ri+1 Ri+2

since A;J; = —J;A; and for k<i, we have A;J, = J,A;, besides, A? = (—J;J;11)? = —1, these shows
that A; square to -1 and commute with Jy, k < ¢ and anti-commute with J;, so it’s is an element of

the tangent space of R;y;, thus the curve
v(t) = J;e™hit = J; cos(mt) + J; A; sin(wt) = J; cos(mt) + Jiyq sin(nt)

is a geodesic curve in the space R;; 1 in the context of equivalence by G; conjugation due to J; € R; 1,
since y(0) = J; is the same as v(2) = J; in the space R;11 = G;/G;y1, and (1) = —J;. so this curve
can be regarded as an elements of 2R;,;. the exciting point is that 'y(%) = Ji11 € R;19, so for each

loop, we can associate an element in R;,o with it by 'y(%), thus we have
QR 11 = Riyo

this is much similar like that the geodesic curve connecting the north and south pole can be mapped

to the equator! so we have proved
QR41 = Riyo — mp(Ry) = mpp1 (Riz1)
use this result, the Bott periodic is trivial since Ry = Rg in the limit r — oo

Tnis(Rs) = Tn(Roys) = mn(Rs) = mnysO(N) = m,O(N)

. Following the above notation, we try to show that Q; & R; .5, where Q; := {Q € Tan(R;;1); Q* =
—1}, if we fix a specific J;, then the the following map

Riyo = Qi Jin — J7 i

give us a correspondence between this two space since @); consisting of the elements which commute

with Ji, k < i, anti-commute with J; and squares to -I, which satisfied by Ji_lJHl.

secondly, for any @ € Q; , the following map
Qi = Rits: Q — J;Q

give us an inverse map, since J;QJ;, = J;JyQ = —J. J;Q, J;QJ; = —J;J;Q and (J;Q)? = —J?Q* = —1

so as to make sure J;@Q); an candidate of J; ;. From this above two map, we have shown that

Qi = Riyo

we should notice that since @); is just the space iH with the hamiltonian H in specific symmetry
class and only has +1 eigen-value (flattened hamiltonian). so using this isomorphism, we can use

the homotopy groups of the symmetry space to reach the goal of the topological classification of the
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hamiltonian with specific symmetry, namely, if the hamiltonian lies in the tangent space of R;, then

the classifying space of these hamiltonian is R;

Finally, what remains is just to figure out the correspondence between the hamiltonian with the
specific symmetry and the corresponding symmetry space whose tangent space carry on these hamil-

tonian. Just like the Altland and Zirnbauer’s Approach gives us.

f .4 correspondence between hamiltonian class and the associated symmetry space

In order to identify the symmetry class that the hamiltonian share, we need to multiply the factor —i
to the tangent space of the symmetry space, because we have noticed that the hamiltonian in physics is
hermitian, which is not closed under the Lie bracket, we have already multiply ¢ to make it anti-hermitian
and since then to figure out that X = ¢H lies in some kind of symmetry space.

the complex unit factor ¢ should satisfy the following conditions:

1. i is an element of some real orthogonal groups, this condition arises due to the fact that the maximum

space X = iH without any symmetry is the Lie algebra of some orthogonal groups in the real case
2. i%?=-1, this make it a complex unit

3. 7 should commute with the concerning tangent space m of some symmetry space, this condition arises

due to the fact that ¢ act just as a complex number in the space m which is isomorphic to i H

after introducing such factor i,then we have to identify the possible symmetry operator 7" and C' which is

anti-linear with respect to this 7, namely
Ti=—iT Ci=—-iC

after considering all the possible anti-linear operators, we can then identify the symmetries the corre-

sponding hamiltonian H = —iM, M € m possess!
1. we start from the space Ry, which is derived from the following chain
O(16r) x O(16r) § O(16r)

then the tangent space of R; denoted as m_, is the elements in the Lie algebra of O(16r) x O(167)(
X4 0

which is isomorphic to ( X

)) that anti-commute with Jy
2

m_1 ={X € 0(16r) B o(16r); X Jy = —Jo X} = 0(167)

and we have the space of the elements which belong to the +1 eigen-space of the involution Jy,

denoted as h_ is:
ho1=go={X €0(16r) ® o(167); XJy = +Jo X} = 0(167)

then we need to choose a complex unit ¢, if we only consider the above short chain, we argue that

there is no such ¢ as following.

X 0
from the condition 1 and 2, we know that ¢ should be the form i = < 01 x ) where
2

X?2,=-1,X], =X, since i’ =i~! = —i.
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0
-1
0(167). then i should be commute with o, ® 0(16r) = 0(167), from Schular’s lemma, this can happen

At present, we can choose a specific Jy = io, ® L1, = ( ), then m_; =0, ® X, X €

only when i = M, thus i> = A\? # —1 within the real metrics, so no such i can exists in this short

chain.

we can choose the demanded i by considering the group O(16r) x O(16r) is inherited from the

previous chain, namely
. Sp(32r) ;;> U(32r) ;—3 O(32r) % O(16r) x O(16r) 24 O(167)

the complex unit should be regarded as an element in O(32r)(which may be considered as inherited

from an even larger space if need), in this longer chain, we can choose
1=J_
since (J_1)?> = —1 and J_; commute with Lie(O(16r) x O(16r)), then the hamiltonian is read as
H=—-J_1m_

the anti-linear maps, which may be a candidate of T or C, can be choosen as ¢ = Jy,and we find
that
¢H = J()(—J_l)m_l = J_ljom_l = —J_lm_ljo = H¢

since Jy anti-commute with m_; and J_; commute with it.

then this ¢ defines a Time-Reversal symmetry on the hamiltonian H = —im_; = —J_ym_; which
squares to -1, how about other possible symmetries? if we choose ¢ = JyJ_; which is anti-linear,
and

oH = JoJ 1 (=J_1m_1)=—-J_1m_1JoJ_1 = Ho

and ¢? = —1, so it’s another Time-Reversal symmetry on the hamiltonian H = —im_; = —J_1m_;
which squares to -1. but this one is equal to the previous one since J_; is just the complex unit i. so in
conclusion, in this case, it belongs to the symmetry class C which is not coincidental with the results
of their[1]. the reason lies in the fact that in the chain, we regard the symmetry breaking operator
J_o._10 as the elements of O(256r), which may be not effective square to —1 in the subspace R3*",
for example, following the notation of previous sections, J_1 = J; ® I, =0, ® 0, @10y @ 0, @ L16,
which squares to -1, but in the space R3%" it effective acts as o, ® Ig,, so it squares to +1 in this

subspace, or equivalently, only with E? | = +1, the following chain is correct
O(32r) % O(16r) x O(16r) % O(16r)

which makes it an illegal complex unit 4, so the above argument lose it’s meaning! in order to make

it legal, we need to consider even longer chain.

O(2567) - - - ;; Sp(32r) ;—> U (32r) ;—3 O(32r) % O(16r) x O(16r) % O(16r)

which resembles the Clifford algebra isomorphic

G[G,O — 6[770 = 6[270 &® Q[O,Q (9 6[270 — @[072 &® @[270 & @[071 = R8><S — R8><8 ® @[071
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which means that adding the 7-th J; is the same as adding just 1st E; to the existing system. due

to the above reasons, we must consider even longer chain to find the suitable i.

but why so bother, what we need is clear, a complex unit ¢, we can simply make an artificial block
m_1 —> Ia®m_;
and choose an operator that squares to -1 on considering this artificial block
iy =10, @1

then it naturally commute with M=LoM , M € m_;, which make it a legal complex unit i, (in the
following we use the subscript n to distinguish between the new legal complex unit in the hamiltonian

space and the standard one which is denoted as i), so the hamiltonian becomes
H=—i,M = —(ioc, @ )I, ® M = —io, @ M

since we use a new strategy to choose new complex unit i,, so there is no other constrain on M
besides that it belongs to 0(16r) = Tan(O(16r) ® O(16r)/O(16r)), so all the anti-linear operators

with respect to this complex unit ,, are
0,1 0,1
but they are not independent since
0,1 = (0, ®1I)(io,®1) =0,® Ii,
so we can only consider one of it namekly ¢ = 0, ® I, then we have
OH = —H

so this anti-linear operator defines a particle-hole symmetry on the hamiltonian which squares to

+1, thus it belongs to the hamiltonian class D.

D = Ry, = O(16r) x O(16r)/0O(167r) = O(16r) (10)
. as for the symmetry space Rs, there is an extra constrain on M € mg that anti-commute with J;
O(16r) §> U(8r)

since J; anti-commute with M € myg, it can not also serve as an complex unit ¢, due to the same

reason above, we use the strategy of constructing an artificial block
mog—I,b®mg 4, >0y, ®1 ¢=0,®1
in this case, ¢ is also a particle-hole operator which squares to -1
¢6H =—-Hp ¢*=+1

but, we have another anti-linear operator ¢1 = ¢(I, ® J1) = 0, ® Jy, since ¢1i,, = —i,¢P1, besides,
we have

01 H = ¢priocy, ® M = (0, ® J1)(io, ® M) = (ic, ® M)(0, ® J1) = Hpy
since o, anti-commute with o, and J; anti-commute with M. so ¢; is an Time-Reversal operator

which squares to (o, ® J1)? = —I, which make the hamiltonian belongs to the class DIIL.

DIII = Ry = O(16r)/U(8r) (11)
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3. let’s move on to the symmetry space Ras:

O(16r) 3 U(8r) § Sp(4r)

Ra

in this case, since J; commutes with the element M € m; and squares to -1, so it can be used
as an legal complex unit ¢,, in the hamiltonian space H = —iM = —J; M. then there is only one

independent anti-linear operator ¢ = Js, since Jyi,, = JoJ; = —J;1Jo and we have
oH = JoJ M = —-J1 oM = J,MJ, = Hop

so ¢ is a Time-reversal Operator which squares to -1, due to this reason, the hamiltonian belongs to

the symmetry class Al

AIl = Ry =U(8r)/Sp(4r) (12)
4. as for the symmetry space Ry:
O(16r) ;4 U(8r) § Sp(4r) § Sp(2r) x Sp(2r)
in this case K = J;JyJ3 square to +1, but M anti-commute with K, so we can not use K to put M

into diagonal blocks. so we can not separate it into small blocks

in this case M € mg, which commute with J;, Js, so we can choose either be the legal complex unit

, we choose i,, = J; as before.

then the possible independent anti-linear operators are Js, J3, as for ¢ = J, we have
0 H=JJM=—-J1JoM=—-J1MJy,=—H¢

S0 ¢ is a Particle-Hole symmetry operator which squares to -1.

as for ¢9 = J3, we have
GoH = JsJoM = —JyJsM = JoM.Js = Ho,

S0 ¢ is a Time-Reversal Operator which squares to -1.¢1¢, = JoJ3 is a linear operator and serve as
the role of chiral operator which squares to -1, this also verifies that H can not be split into small

blocks. thus the hamiltonian belongs to the symmetry class CII

CII = R, = Sp(4r)/Sp(2r) x Sp(2r) (13)

5. let’s move onto the symmetry space Rs:
O(16r) ;4 U(8r) ;4 Sp(4r) ;% Sp(2r) x Sp(2r) ;4 Sp(2r)

in this case, K = J;JoJ3 squares to +1 and commute with M € mg3 since M commute with Jy, Js, J3
and anti-commute with Jy , so M can be put into diagonal blocks with respect to the eigen-values
of K, we choose the block where K equals to +1. and denoted the new block as mj since we only

care about the symmetries in the irreducible blocks.

since Ji, Js, J3 commute with K, commute with mg and square to -1, so they are all legal complex

unit in the hamiltonian space Jymg and the chosen block Jlmgr, we choose i,, = J; as before.
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in the chosen block Jymy, only the operator commute with K are allowed, so all the possible anti-

linear operators are Js, J3, since K = J;JoJ3 = +1 in this block, they are not independent.
Jo = JiJ1Jadsds = J1 + 1J5 =i, J3
so only one an-ti linear independent operator ¢ = J,
oH = Jyp Mt = -], JoM*T = —J Mt Jy=—-H¢

thus it serve as a Particle-Hole symmetry which squares to -1. so the chosen block hamiltonian

belongs to the symmetry class C.

C = Rs = Sp(2r) x Sp(2r)/Sp(2r) = Sp(2r) (14)

if we consider the whole space instead of one block. then all the possible anti-linear operators are
J27 JS; J47 J2J3J4

Js, J3 are two Particle-Hole symmetry operator that squares to -1, and J; is an Time-Reversal
symmetry that squares to -1, JyJ3Jy is an Time-Reversal Operator that squares to +1. all these
symmetry reduced to one Particle-Hole symmetry operator that squares to -1 effectively in one
irreducible block.

. as for the symmetry space Rg

O(16r) ;4 U(8r) §> Sp(4r) RE> Sp(2r) x Sp(2r) R}% Sp(2r) B U(2r)

Rg

in this case, we at first try to figure out the possible diagonal blocks. we can try to find the operators

that are mutually commute and each commutes with M € m4 and squares to +1.

in this case, K = J1J5J3 is such an operator. in order to choose another one, we can only pick one of
J1J2J3 so as to make these two mutually commute, thus the only possibility is My = J; J4J5(we put
the subscript 0 to avoid misleading ), but M, anti-commute with M € my since Js anti-commute

with it and Ji, J4, commute with it

so, only, two blocks which is the 41 eigen-space of K, as before, we consider the 4+1 block, namely
M* emf
and we choose the legal complex unit i,, = J; as before. then the allowed anti-linear operators in

this block are( commute with K = J;J5J5 and anti-commute with .J;)
Jo, I3, JadyJs, J3JyJs
and the independent anti-linear operators in this block are(note that Jy = 4,,J3)
J2, JaJsJs
as for ¢ = Jo,we have
0 H = JoJymf = —J1Jomf = —JymfJo = —He,

thus ¢, is a Particle-Hole symmetry operator that squares to -1
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as for ¢o = JoJyJ5,we have
¢2H = J2J4J5J1mj = Jlij2J4J5

thus ¢, is a Time-Reversal symmetry operator that squares to +1

so the hamiltonian belongs to the symmetry class CI
CI = Rg = Sp(2r)/U(2r) (15)
similarly, if we consider the whole space my4, then the allowed anti-linear operators are
Jo, Js, Iy, Js, Jsdads, Joduds, Jodsdy

Js, J3, Jy are particle-hole symmetry operators that squares to -1,J5J3Jy is particle-hole symmetry
operators that squares to +1,J3J4J5, JoJyJ5 are time-reversal operators that square to +1, all these
symmetry reduced to a Particle-Hole symmetry operator that squares to -1 and a Time-Reversal

symmetry operator that squares to +1 in the diagonal one block.

7. let’s go advance for the symmetry space Ry

O(16r) EIN U(8r) ﬁ Sp(4r) § Sp(2r) x Sp(2r) }% Sp(2r) § U(2r) § O(2r)

Ro 7

in this case, K = JyJoJ3,My = J1J4J5 mutually commute and each of it commute with M € mg
since Ji, Ja, J3, Jy, J5 commute with M and Jg anti-commute with M. so we can choose the block
with K, My take the value +1, namely, in the space M** € md ™. in this case J; commutes with
both K and My, besides it also commutes with M ™" and square to -1. so it’s also an legal complex

unit in the hamiltonian space Jym3 ™.

then all the possible anti-linear operators in this block are(commute with K and Mj, anti-commute
JoduJs, Jods Js, J3JaJs, J3J5J6

and since K = J1J2J3 = +1 and MQ = J1J4J5 = +1, so the JQ = J1J3 = ZnJ3 and J4 = J1J5 = inJ5,
which means J; and J3 are the same and J; and J5 are the same, thus the independent anti-linear

operator in this block is just
JodyJs

thus ¢ = JyJyJg, we have
¢H = J2J4J6J1m5++ = Jlm;+J2J4J6 = Hd)

thus it defines a Time-Reversal symmetry operator that squares to +1, so the hamiltonian belongs
to the symmetry class Al.
Al = R; =U(2r)/O(2r) (16)

similarly, we can discuss all the possible symmetry operators in the whole space Jyms, we ignore it

here since it give us no more information and we only care about the irreducible blocks.

8. as for the symmetry class Ry,

O(16r) 73 U(8r) 25 Sp(4r) 2+ Sp(2r) x Sp(2r) = Sp(2r) 7 U(2r) 55 0(2r) 3 0(r) x O(r)

5 R
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then K = J1JyJ3, My = J1JyJs, N = JoJyJg are mutually commuting and each of these commute
with M € mg.thus we can just consider one block denoted as M*+*+ € mI™*. but this will bring us

another problem that is the choice of the complex unit 4,.

because 7,, should be commute with K, My, |V, mg++ and squares to -1. we argue that there is no

such element in this block. this is the similar as the case we discussed in R;.

, 80, i, can not contain any factor of J; since it squares

at first, since J; anti-commute with mg ™"

to -1, so it must consist of 1,2,5,6 of such J;’s, let’s enumerate it as following.

at first , just one such J; involved, it should be commuting with K, My, thus it must be Ji, but J;

is not commuting with N, so this case is excluded.

two kind of such J; involved, so it should contain two or none factor of K, My or N, that is possible,

since K, My or N only has at most one common factor

five kind of such J;, thus it can be write as +J,JoJ3Jy4J5J5J;, since JyJoJ3J4J5Jg anti-commutes
with K, My, N, thus the extra J; must anti-commute with all of K, My, N, that is impossible, since

K, My, N contains one such factor J;.
six kind of such J;, the only possibility is J;JoJ3J4J5J5 but it anti-commutes with K, My, N

so if we choose this block, we can not find a complex structure ,,, thus it’s impossible for us to define

the anti-linear operator.

instead, we choose some larger block, namely, we add the block where N equals to -1 to the hamil-
tonian, or equivalently, we consider the block m{¢ ™ as in the case of Ry, where K and M, take the

value of +1

then we can also choose the complex unit as i,, = J; as before. then the possible independant

anti-linear operators are(anti-commute with J; and commuting with K, M)
JodJaJs, J2JsJ7
if we choose ¢1 = JoJyJg, we have
OH = JodyJsJimit = —Jymi T JoJyJs = —Ho

thus it’s a Particle-Hole symmetry operator that squares to +1

if we choose ¢y = JoJyJ7, we have
¢H = JQJ4J7J177”L8F+ = —J1J2J4J7mér+ = +J1mér+J2J4J7 = H¢

thus ¢, is a Time-Reversal operator that squares to 41, so the hamiltonian belongs to the symmetry
class BDI

BDI = Rg = 0(2r)/O(r) x O(r) (17)
. Finally, let’s consider what happens if we consider one more such chains, namely Ry

J J J J Js J J J
O(16r) Ri U(8r) R% Sp(4r) R% Sp(2r) x Sp(2r) Rf Sp(2r) Ri U(2r) R% O(2r) Rf O(r) x O(r) R—E O(r)

in this case, the mutually maximum commuting operators that square to +1 and each commute with

my are
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K = Ji1JoJs, My = J1JuJs, N = JoJuJs, P = J1JsJ7

so we can choose one block, m3"*", due to the same reason that we can not choose a legal complex

unit in this block, we must add the -1 block of the N operator to our hamiltonian, and effectively,
consider the block mi ™", where K, My, P take the value +1.

in this case, we can still regard J; as the complex unit ,,, then the independent anti-linear operators
in this block(commute with K, M, P,anti-commute with .J;) are(.Jg is not allowed in this block since
it anti-commute with K, My, P)

JodyJs

thus ¢ = JoJyJg ,and we have
¢H = J2J4J6J1m?++ = —JlJQJ;,LJ({/TL;HF+ = —J1m¢++J2J4J6 = —H¢

thus ¢ defines a particle hole symmetry operator that squares to 41, so the hamiltonian of the
concerning block belongs to the class D. in this case, J; plays the role of the ioc, ® I in R, and
N = JoJ,Jg plays the role of 0, ® I in Ry in our artificial construction of the complex unit ¢,, and

argue that it should be lying in some ever larger space(longer chain).

in this stage, we point out that that’s just the case and we should consider the whole chain to figure

out this artificial 7,,, but the effect is the same, and it bring us to a full circle.

D =Ry =0O(r) x O(r)/O(r) = Ry = O(16r) x O(16r)/0O(167)

in conclusion, we collect all the results above in the following table and the following chain:

O(16r) 3 U(8r) §> Sp(4r) §> Sp(2r) x Sp(2r) é Sp(2r) B U(2r) % o(2r) ;4 O(r) x O(r) };f o(r)

J J,
Ry Rg

Table 1: the symmetry space and the corresponding hamiltonian and their symmetry class

Classs T [I? C |C*Complex Unit i M =G;/Giyq H vs m = TM|Q = Flatten(H)
D 0 |00, ®I|+ ioy, @1 O(16r) x O(16r)/0(16r) = O(16r)H = —il, @ m R
Dilllo, @ Ji| —|o. @ I|+1]  io, @1 O(16r)/U(16r) = O(16r)  |H = —il, @ m Ry
ATl J, |- O |0 J1 U(8r)/Sp(4r) H=—im Ry
CII| Js |—| J2 |— J1 Sp(4r)/Sp(2r) x Sp(2r) H=—im R;
C 0 (0] Jo |— Jy Sp(2r) x Sp(2r)/Sp(2r) H=—im" Rs
CI | Jodyds|+| Jo |— Jp Sp(2r)/U(2r) H=—im" Ry
AL |l duds|+| 0 |0 i U(2r)/0(2r) H=—im™ | Ry=R,
BDI|JyJuJ7 |+ |J2JsJs| + J1 O(2r)/O(r) x O(r) H=—im*t Ry
D 0 |0 |Jaduds|+ J1 O(r) x O(r)/O(r) =2 O(r) H=—im*t+ R,
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Appendix
Appendix §1 Riemannian Symmetric Space

R.1 Definitions and Basic Properties

EX §1.0 A (Riemannian) symmetric space is a Riemannian manifold S with the property that the
geodesic reflection at any point is an isometry of S. Namely, for any = € S, there is some s, € I(S)(the

isometry group of S) with the following properties:

Sx(x) =2 dsgl, = —1

where s, called the symmetry at x and ds,|, means that the map of the tangent space induced by s,,

namely

_ dss(7(1))

dsz|-(X) dt li=0

§(t)lo = X 1(0) ==

since we can reflect the geodesic, so we can extend any geodesic defined in a small interval to the
whole space, due to the same reason, any two endpoints of a geodesic can be mapped to each other by the
reflection of the midpoint. so the isometry group of S denoted by G=I(S) act transitively on the symmetry
space S.

if we fix a base point p € S, the closed subgroup of G with the property g(p) = p forms a group,
denoted by G, this is called the isotropy group, we use K = G, to represent it.

1

suppose s, is a symmetry at p, then for any ¢ = gp € S, we find that sy, := gs,¢g~" is a symmetry in

q since

gspg_lq =4 d95p9_1|q = gd3p|p9_1 = g(_I)g_l =-1

so we have the following theorem
Theorem §1.0 A symmetric space S is precisely a homogeneous space(I(S) act on S transitively)

with a sym-metry s, at some point p S.
on the other hand, the G action is equivariant over the following map
G/K — S gK — gp
so we can identify the symmetry space as S = G/K.

R.2 Examples

$.1 the Euclidean Space

the symmetry at x is s,(z + v) = & — v since s,(x) = z and ds,|.(v) = dsf(;;r”t) = d(‘”(;t”t) = —v
which means that ds,|, = —I. in this case G is the euclidean group E(n) generated by translations and

orthogonal linear maps; the isotropy group of the origin O is the orthogonal group O(n) and we have

R" = E(n)/O(n)
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$.2 The Sphere

if we regard S™ as the subspace of R"*! with Z?Jrll x; = 1 with the metric induced from the standard

scalar product in R"*! then the symmetry at z € S™ is the reflection along Rz, namely (note that e, = x)
Sz(Y) =< y,ex >ep— (Y— < y,ex >e€,) =—-y+2<y,r>zx

since s,(z) = x and ds,|,(v) = L(—y(t) +2 < y(t),z > z)|[t0 = —v +2 < v,x > 2 = —v due to the
fact that < v,z >= 0, since we have < (t),v(t) >= 1, so the tangent space at x is T,,5" = {v € R"*!; <
z,v >=0}.

the isometry group is the group G=0(n+1), and the isotropy group at the point e,,11 = (0,0,---,0,1)
is the group O(n), so we have

S™ = O(n+1)/0(n)

$.3 The Hyperbolic Space

consider the metric defined in R"*! by (2,y) = >_1" | %y — Tp+1Yn+1, the Hyperbolic Space is defined
as one sheet of the Hyperbolic sphere, namely by, H" = {x € R""!; (z,z) = -1, 2,41 > 0}
in order to make this space a Riemannian manifold, we should show the tangent space is positive

definite, namely T, H™ = {v € R""!; (x,v) = 0} has length larger than zero.

= szz n+1 = ZU - ”12%1(2 ;v;)

i=1

zl‘r

2
VA
v D1 T +1( v doic T+ 1

the symmetry at point x is also the reflection along Rz, suppose we decompose y as the one along x
and vertical to x with respect to the scalar product, y = Ao + v, with (v,, ) = 0, then we have

(y,z) = N\y(z,2) = =\, = A\, = —(y, x), so we have
se(y) = —(y,2)r — [y + (y, ¥)a] = —y — 2(y, )z
we can verify this is symmetry at x explicitly
Sp(x) = —x 4+ 2x = dsy|,(v) =—v

and the isometry group is the lorentz group G = O(n, 1)" (+ sign due to the fact that we only pick up one

sheet), the isotropy group of e, is again O(n), so we have

H"=0(n,1)*/0(n)

§.4 The Orthogonal Group
The Riemannian metric on O(n) is induced from the trace scalar product on R"™*", namely

<xy>—trxy Zx”ylj

the left and right multiplication with orthogonal matrices preserve this inner product and make the whole

space O(n) invariant, so they act as isometries on O(n) turning O(n) into a homogeneous space.
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besides, consider the following linear map

si(z) =T

it also preserve the inner product < s;(z),s;(y) >= tr(zy?) = tr(z’y) =< z,y > and make the whole
space O(n) invariant. so it’s also an isometry.
so the isometry group is G =< sy, Ly, Ry >, the isotropy group at the identity I is K =< s;, L, 0
R,r >, and we have
O(n) =< sy, Ly, Ry > | < sy,Lg0 Ryr >
and the symmetry at the identity is just the map s; since we have
d d d

si(I) = 1" =1 dsi|1(v) = Zs1(v(#))li=o = 27" (D=0 = =7 () V(7 (BO)li=o = —T0I ™ = —v

1

and the symmetry at arbitrary element g € O(n) is given by s, = ¢gs;g~ " and

sg(x) = gs1g~'w = gsi(g"x) = ga'g

¢.5 Compact Lie groups
let S = G be a compact Lie group with biinvariant Riemannian metric, i.e. left and right translations

Ly, R, are isometries for any g € G. besides, consider the following map

sc(9) =g

since sc(e) = e and dse|c(v) = 77 (t)imo = =Y HE) Ly ()Y (t) im0 = —eve = —uv, if s, is also a

isometry, then it’s isotropy at the point e and by theorem 1, it’s a symmetry space.

since ds.|. = —I which preserve the length of the tangent vector of T,G, and we know for any g € G
SeLg = Ry-15,
which means that
dsclgodLyle = dRy1|c 0 dse|e — ds.|g = dRy-1]c 0 ds,|c 0 od Ly !

which show that ds.|, preserve the length of the vectors in 7,G since L, and R, are isometry and
ds.|. = —I which preserve the length of the tangent vector of T.G. this shows that s, is an isometry.

so G is a symmetry space and we have

G=<5¢,Ly, Ry >/ <8c,LgoRy1 >

$.6 Projection model of the Grassmannians

let S = Gi(R™) be the set of the all k dimensional linear subspaces of R™ which is called Grassman
manifold. then the isometry group is G = O(n). and the isotropy group of the standard k dimensional
subspace is K = O(k) x O(n — k), so we have

S = O(n)/(O(k) x O(n - k))

the symmetry sg at a specific point E is the reflection along this subspace E, namely, if F can be decom-
posed as Fg ® Fg., then
SE(F) = FE & —FEL
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in the following, we try to consider the Riemann Metric structure on this symmetry space.

we try to consider the following map
S — Hom(R",R") E — Pg
with Pg be the projection to the E subspace. which is equivariant in the sense that
9P, EQT = Iyp

for any g € O(n)
since Hom(R™, R™) = M (n) and Pg is symmetric, so Pg contained in the space S(n) C M (n) which

is the space of symmetric metrics. furthermore P2 = Pg, so it also contained in the space
P(n) := {p € S(n);p* = p}

Py is k dimensional subspace projection, tr(Pg) = k, so the Grassmann manifold can be identified as the

following through the map F — Pg
P(n)r = P(n)NS(n)g S(n) :={x € S(n);tr(z) =k}

then P(n) is the orbit of the following standard subspace projection Pg, under the conjugate action of

the group O(n) on S(n):
1
Po=( " Y
0 0

and the isotropy group of Pg, is O(k) x O(n — k) C O(n). we consider the corresponding Lie algebra,
since T;O(n) — T (O(k) x O(n — k)) has the following form

0 -LT
L 0
for arbitary L € R(™~%)** 5o the dimension of the grassmann manifold is k(n-k).
besides consider the map on S(n) defined by
S(n) = S(n) p—F(p)=p"—p
since Gi(R") C ker(F), so we know that T,,Gx(R") C ker(dF,,), by the way
ker(dF,,) = {v € S(n);vpg + ppv = v}

since 1 — pg = pgy, the above equation means that vpg = pgiv, so for any vector u € R", we can
decompose it as u = up + ug., since v(ug) = vpr(ug) = pprv(ug), so we have v(ug) € E+. similarly,

v(ugr) = ppiv(ugr) = vpp(ugs) = 0, this means that v is a linear map from E to E+, which means that
ker(dF,,) = Hom(E, E*)

so dim(ker(dF,,)) = k(n — k), which means that
T, Gr(R") = ker(dF,,)

then we can use the metrics on S(n) to induce the Riemann metrics in the Grassmainn Manifold G (R™)
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so ,finally we have
Gk(Rn) — S(n)k
E— PE
9E = gPpg" = Py

suppose sg is the reflection along E in the space G (R")(the symmetry at E), so we can convert it to the

language that in space S(n); with $g defined by

5p(x) = sprst = sprsp
we show that § is a symmetry at Pg,firstly we have §g5(Pg) = sgPgsg = Pg, secondly dég|,, (v) = sgvsg,
we have
dsglp, (v)(u) = (V) (up + upL) = spvsp(ug) + SEVSp(upL)
=spu(ug) + spv(—ups) = —v(ug) + 0= —v(ug + ups)
-

since v € Hom(E, E*) if v belongs to T,,S(n), then the above equation means that d3g|,, is just -I as

expected. so §g is the symmetry at pg

f .7 Reflection model of the Grassmannians

similar to the projection model of the grassmainn manifold, we can consider the reflection representa-
tion of the linear subspace, suppose E is a k dimensional linear subspace of R", we can consider the map

of the following

Gr(R") — Hom(R", R")

E — sg

where sg is the reflection along the E space, which reflect the vector component in the complement of E.
since sg + I = 2pg, with pg the projection model. so we can identify this Grassmannians as the following
space R(n)y

R(n) = O(n) N S(n) R(n)r = {s € R(n);tr(s) =2k —n}
§.8 Complex Structures on R"

Let S be the set of orthogonal complex structures in R™ for even n = 2m. The elements of S are real

orthogonal n x n-matrices j with j2 = —I. and we also have j = —j7, thus we have
S=0(m)NAn)=1{je€ An);j> = -1}

since the eigen value of j are all +¢ with multiplicity m, so all S is in a conjugate class, an orbit under
the action of O(n) by conjugation,namely, reduced from the < s, L,, R, >(the isometry group of O(n))
to < LyR,~1 >= O(n) , so the isometry group of the S is just the G = O(2m). if we consider a standard

oo 0
Jo m 1 0
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then the isotropy group of this complex structure i is the metrics g € O(n) satisfying
.1 .
9Jog = Jo

0 1 0 1
if we write g as A ® B, this constrain is just that B ( ) 0 ) = ) 0 ) B, which means

0

that B has the form of al +b ( ) , since then g = A® (al +b ( )), if we regard

0 1
the latter one as the complex number due to j@ = —1 , namely al + b 0 ) =a+bi = ¢

then the constrain that gg?7 = I, implies that (A ® ¢)(AT ® (a — bi)) = A Al = I, which means that g is
an unitary metrics, since ¢!’ = a — bi = ¢* and A ® c is just the complexity of the real metrics A. so the

isotropy group of jo is just K = U(m), then we have:

S =0(2m)/U(m)
then we consider the tangent space, consider the defining map of S from O(n) to O(n), namely
F:j—=F@H)=45+1
then S = ker(F;) and we have that
T;S = ker(dF;) = {v € A(n);vj + jv =0}

'=4j,50

which consists of the metrics anticommuting with j. as for the space T;U(m), since gjg~
T;U(m) = {v € M(n);v" = —jvj,vj = jv}
and the tangent space of O(2m) at the point j is just
T,0(2m) = {v € M(n);v" = —juvj}

since j7 = —j, so we also have if v € T;O(2m), then v = —jv” j, thus we have

vl = —jlo+o")j = v +0T) = (v+oh)j

v—vl =" —v)j = jv—v")=—(v-0")j
since v = 1(v+ v7) + (v —vT), so the element of T;0(2m) can be decomposed of the part which is
commute with j and the part which is anti-commute with j, and this two part correspond to the space
T;U(m) and T}S, since only the commute part consists a closed sub lie-algebra, and the symmetry space

is the anti commute part, which is not closed under lie bracket, so we use the quotient to derive this

symmetry space in light of the basic groups

S=002m)/U(m)
T;(0(2m)) = T;(U(m)) ® T;(S)

f.g Real structures on on C"

Let S be the set of real structures on C™. A real structure on C" = R?" is a reflection x at a totally
real subspace E of half dimension where “totally real’means iF 1L E. In other words, & is a reflection which

is complex antil-inear.
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since k is symmetric, if we define S(2n)_ as the intersection of S(2n) with the space of complex
antilinear maps on C". since complex antilinear maps in C™ can be regard as the reflection with respect
to the real part E if we view C™ as the E @ iE = R?".

since reflection can be viewed as the subspace of symmetry and orthogonal operators, if further require
the anti-linear ,then it means the -1 eigen-value exists, so only reflection remains. if we denote the complex

structure of C™ as j,then we have
S=502n)_-N0O2n)={k € R(2n),;kj = —jK}

then we try to figure out the isometry group. since U(n) C O(2n) is the element g which is commute with

j, so we have

1 1

jgrg™ i = gjrjg T = grg " (grgT! ) =grPg T =gg ' =1

which means that U(n) is the isometry group of S.

consider the standard real structure of complex conjugate in C™, which is anti-linear and refection
over E, E is the real span of a unitary basis of C™. namely ko(v) = v. the isotropy group of this element
is satisfy that grg = kog, which means that g is real metrics, together with the fact that g is element of

U(n), so g should be O(n). so the isotropy group is O(n), then
§=U(n)/O(n)
then we try to figure out the tangent space, for the map F(z) = 272z — I define S C S(2n)_, we have
ker(dF,) = {v € S(2n)_;v" Kk + kTv = vk + kv = 0}

thus v € ker(dF},) iff the C-linear map kv is a real anti-symmetric (kv)T = vk = —kv, thus kv € TrU(n)
Moreover, kv anticommutes with &, so it is purely imaginary with respect to the real structure x.On

the other hand, the purely imaginary matrices in 77 (U(n)) form a complement to 77(O(n)), so
ker(dF,) = T,(S) T1(U(n)) = T1(O(n)) ® TS

and the symmetry s, is given by the conjugation with x, i.e. s,(x) = kzk. it fix k and act as -1 in T, (5)

since kuk = K(—kKV) = —u.

R.3 Transvections and Holonomy

Let 7 be the geodesic segment connecting p and q such that v(0) = m is the mid point, and extend

it to a complete geodesic. suppose X(s) is a vector field along -, namely

L) = X(1)

then consider the vector induced vector field by the symmetry at m, Y(¢) = s,,(7(t)) = v(—t), then

X(t) = G3() = §7(=0) =~ (=0) = =X (=

this means that the symmetry in m s, induced a vector fields mapping

dsm (X (1)) = =X (1)
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then if we consider the composition of the symmetry at two different points, 7 = s,0s5,,, then this isometry

will induced an vector field mapping following (if ¢ = (%))

T(Y(®) =t +1)  drly) X (8) = X ([ +1) (18)

which means that this kind of isometry consisting of the composition of two symmetry is a parallel trans-
lation along the geodesic, such kind of isometry is called transvection along ~. this kind of transvections
form a one-parameter subgroup of the isometry group G. so we have the following theorem:

Theorem §1.1 Fach complete geodesic v of the symmetry space, is the orbit of a one-parameter

group of isometries, the transvections along -+, which act as parallel transports along ~.

R.4 Killing Fields

Let S be a symmetric space and fix a base point p € S. Let g be the Lie algebra of the isometry group
G of S viewed as the space of Killing vector fields. namely choosing a curve in G as g(¢) with ¢g(0) = I,
then the isometry acting on the base point forms a curve in S, v(t) = g(¢)(p), this curve induced an vector
field over S, which must be a killing filed X(t) due to g(t) preserve the length in S, all these vector filed
X(t) forms the Killing filed representation of the Lie algebra for the isometry group G.

d
X, = L0 e)lmo
as for the isotropy group at p, this induced Killing filed is zero at p since if y(t) € K, then v(¢)(p) = p

which is independent of t, so
d
%(p)lt:o =0

so those Killing vectors satisfying X, = 0 forms the lie algebra h := {X € g; X|, = 0} of the isotropy

X, =

group at p, K = G,.
we claim that

=bop

where p := {X € g; (VX)|, = 0}, which is the space of infinitesimal transvections at p!

since for any geodesic at p with velocity v € T},5, there is one parameter group of transvections for
this geodesic, labeled as g,(t) € G, then this one parameter group induced a vector filed over S by the
curve v,(t) = g,(t)(p), so the Killing filed of this parameter group is

d
Xp = g(%(t)(iﬂ)ﬂt:o
we have the derivative of V with respect to w € T,,S is the infinite small parallel transport of the vector

field X along the curve defining w, namely, if p(s) is a curve in S start at p with velocity w, then

Ve Xlp = 0O P) .m0 = e gu (1) (Pl imamo = (g (1) )0 = 0
since dg,(t).w is the parallel transport of w. this means that infinitesimal transvections at p are in p. since
a Killing field is determined by its value and first derivative at a single point. so h and p consists all of
g, since the first one has a degree of freedom on (VX), and the latter one has a degree of freedom on X,
which cover all the cases and the dimesion also matches.

moreover, we have the following theorem about these algebra struture
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Theorem §1.2 Let S be a symmetric space and p € S, let h be the set of Killing fields vanishing
at p and let p the set of infinitesimal transvections at p, i.e. the Killing fields with vanishing covariant

derivative at p. Then

b, Ch [bplCp [pp]CH (19)

further, the map p — 7,5,V — V,, is a linear isomorphism, and for all U,V,W in p, we have
(R(U, V)W), = ([U, [V, W],
where R is the Ricci tensor.

we can see this since if XY in b, since X, = 0, we have VxY = 0, similarly, since Y, = 0, we have
VyX =0, so we have [X,Y] = VxY — Vy X =0 at p, this prove that [h, h] C b.

similarly, if V,W in p, then VW = 0 since VW = 0,similarly, ViV = 0 since VV = 0 at p.so we
have [V,W] = Vy W — Vy'V = 0 at p this prove [p,p] C b.

so we only need to consider [X, W] = VxW — Vy X, since [X, W]|, = —(VwX), which can be non
zero. so we only need to prove that Vi[X, W] vanishing at p. this can be achieved by using the Bianchi

identity and the properties of the Killing Field, we omit this tedious proof here.

R.5 Cartan Involution and Cartan Decomposition

Theorem §1.3
a)Let G be a connected Lie group with an involution (order-2 automorphims) o : G — G and a left

invariant metric which is also right invariant under the closed subgroup
K = Fix(0) = {g € G; 9" = g}

Let K be a closed subgroup of G with
K°cKCK

where K° denote the connected component (identity component) of K. then S = G/K is a symmetric
space where the metric is induced from the given metric on G.

b)Every symmetric space S arises in this way.

comments: we get a decomposition g = h & p, where h and p are the eigenspaces of o, corresponding
to the eigenvalues 1 and -1
Theorem §1.4 A vector space decomposition g = h @ p of a Lie algebra g is the eigenspace decom-

position of an order-two automorphism o, of g if and only if

h,b]Cbh [b,plCp [p,p]CH (20)

comments: this is simply the fact that

U*([EMEM]) = [U*EMU*EM] = [/\E/\aHEu] = )‘M[E/\’EM]
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