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Y.1 THE KLEIN-GOLDEN FIELD

T.1 The Klein-Golden Field

R.1 classical point of view

for a real klein-Golden field the quantaty is listed below: lagrangian density:
1., 1 1 2
2

1 1
L=50° = 5(VO)* = 5m?e* = 50,00"¢ — Sm*¢

motion equation

(60, +m?)p = 0

Hamitonian density:

_12 1 2 122
Hwi +2(V¢>)+2m¢>
oL
™= —
0¢

using fourier transformation:

the motion eqaution become:
2

9
o

let w2 = [p]*> +m? one can get the motion eauation just like ocsillator:

+ (Ip*+m*) =0

2
2 _
@—pr—o

R.2 quantilization of K-G Field

[p(x), 7(y)] = i (x — y)

3p 1 ' . er 1 .
o(x) = / p (ape™ + aj,e_“””) = / p (ap + a“L_p)eLpac

W\/ij (2m)3 \/m
77(118) = /(;TP;(Z) %(apeipx _ a;e—im) — /(irp;(i)\/?(ap - aT_p)ez'px

[ap, al] = (2m)%6) (p — )

to integrate the hamitonian densenty, we get the hamitonnian:

By 1
H= /Hd3x = / (27T)3wp(a;ap+ 5[%,@;])

to make a similar calculation, we get the monnmentum of the field:

P = —/d?’.’mr(x)v¢(m) = / (;nggpa;gap

the state is defined as:
p) = /2E,a}|0)

and the interpratation of ¢(x)|0) is that create a partical at position x. and there are some realtions:

[H,a,] = —a,E,
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Y.2 THE DIRAC FIELD.

[H, aL] = a;f,Ep

ant) = Mgty = [ ST

e (apeiipz + a;‘fim> |pO:Ep

n) 2o,
m(x,t) = %q&(x,t}

we shold notice that the inner producr in the above relation is lorentz four vector’s inner product.

4.1 K-G Propagator

D(z —y) = (0|¢(x)p(y)|0) = /277;3211%

[¢(x), ¢(y)] = D(x —y) = D(y — )

e~ P(z—y)

the retared Green’s Function:

Di(x — ) = 0(z0 — 10){0][6(x), $(1)][0) = Oz yg/ /@Olewuw

2mi p2 — m?
there we introduce a fomilism for delta function:
(0:0(2))f(t) = — (e f(£))d(2)
the motion eauqtion of the retarded green function is :
(0% +m*) Dp(x —y) = =id (x — y)

the fourier tranfer of the green function is:

i d*p i
Dr(p) = maDR(ZF —y) = / 20N PP —m?

the feymann progatator for a klein-golden partial:

d*p i
(2m)%) p?2 — m? + ie

Di(a —y) = 01T6()o)10) = [

Y.2 The Dirac Field.

the lagrangian:
L= V(iv"d, —m)¥

R.1 representation of the lorentz group espically for 4 dimensions

if we define
JHY = (0" — x¥oM)

then the six operator generate the three boost and three rotation of the lorentz group.

[JEV | JP0) = i(g"P JHT — ghP g — g"% JH 4 gh? JvP)
to clearly see theis operators is the generator ,we can use them to form the lorentz transfer:

—
L

!
— = I —
VvV V ( 5
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Y.2 THE DIRAC FIELD.

in the above description, the w,, ,is just elements a random metric w which describ a lorentz tranferoma-
tion.
dirac’s trick for the representation of lorentz group for n dimension:

if v* is the n dimension metrics satisfying the relation:
{7} =29"1
then the six metrics:

l
5 = Jh 7"

is the generator of the lorentz group for n dimensional representation(to prove this, we just need to show

the commutation relations ).

R.2 the dirac algebra

the dirac v metrics:

0 1 0 —1 1 0
ol = ol = od = (1)
1 0 7 0 0 —1
0 1 ‘ 0 o’
7 = V= (2)
1 0 —o’ 0

0i _ 1 i _ L ik _ L ijkyk
T 57 =5 5T 0

some properties of the generator:
[, $07) = ()"
ANy = ALy
2

A

1
2

= exp(— %w,“,S‘“’)

since the metrics S*¥ is not hermitian, so we should take care of it when related to corresponding calcu-
lations.

some properties of these metrics:

we define 4 vector :




Y.2 THE DIRAC FIELD.

then the gamma metrics have a unit form:

we can use sixteen constant metrics to form a basis for the 4-dimensional metrics space:

o]

1yt ™ = iyl Pl iy by
and we can use y°to simply the expresion for the last 5 metrics:

o i LV po
Y =" = = €Y

we can the clrearly see that:
’Y[H'YV'YP'YU] _ _ieuupa,y5

5

17

,Y[M,y ,yp] = —ie"P7y,

the properties of the gamma®:

() =7°

(") =1
{7} =0
[y*,8"] =0

in dirac’s representaion, we have:
-1 0
v = ()

0 1

the standard choice of theses metrics:

v i v
Ly ot =5h"y 1, v*°,°

a property of the Pauli metrics:
(0")ap(0)ys = 2€av€ps

(5-M)Ot,3 (5-M)’Y5 = 2604'76,86

R.3 classic solution to dirac equation

the weyl spinor:
100V, =0

an\I/R =0

the solution to the dirac equation:
(iv"0, — m)¥(z) =0
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Y.2 THE DIRAC FIELD.

using fourier tranfer we get the solotion for positive frequency:

W) = [ G = (0 —m)ulp) = 0

the solution is :

Vpeog®

Vpeog®

and the normalization is :
vt = 2mé™* — (u")u® = 2E,6""

the helicity operator:

using fourier tranfer we get the solotion for negetive frequency:

d4p ipx
V@) = [ G > (" +m)ulp) = 0
the solution is :

Vpean

v*(p) =
—vpean’
and the normalization is :
v = —2moé"® — (UT)T’US =2E,0"°

Zﬂs(p)us(p) =yep+m
ZU =vyep—m

R.4 quantilization of the dirac field

L =U(iv"d, —m)¥
H= /d?’x\P(—m oV +mVU = /d?’x\I/T(—i%'y oV + myy)¥

the quantilized dirac field is:
U(z) = / 27)7 TE Z a,u’ —irT (b;)Tvs(p)e”"”)
the anticommutation relations are:
{ap, (@)™} = {0y, (05)1} = (21)°6°(p — q)0"

{Wa(2), Ui(y)} = 8*(x — y)das

(6)

(7)

5 of 26



Y.2 THE DIRAC FIELD.

then the hamitonian is : o
p S S S S
= / (27_[_)3 § EP((ap)Tap—’_ (bp>pr)

the total monmentum operator is:

dS
_/ 3§)ﬂ »lay + (0)'0})
the angle monmentum is :
1
J= /de\IJT(f x (—iV) + §E)xp
the total charge:

_ d37p asTasi s\T#ns
Q= [ (o L' - ')

$.1 the feyman propagator for dirac field

the retared green function:
Sr(z —y) = (i, +m)Dgr(z —y)
the greenn function satisfy the equation:
(if), —m)Sg(x —y) = i6"(z — y)I

the fourier transform of the retarded green function is:

i(p+m)

p2_m2

Sr(p) =

the feymann propagator:

Sp(x—y) = / (d4p tptm) e i@y

2m)% p?2 — m?2 + ie

~i(ptm)
Sp(p) = 02— m? e

R.5 discrete symmetrics in dirac field

parity P,time reversal T,and chage interchage C

1.Parity P:reverse the momentum but preserve the spin:
of P gt
a, 10) — a*,[0)
Pay P =mn,a’,
Pby P =npb”,
Natly = —1
PY(t,x)P =1,y U(t, —x)
PU(t,a)P = iUt )

2.Time Reversal T:reverse the momentum and spin
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Y.3 THE VECTOR FIELD

time reversal operator also act on the c-number:
T(c)=c"T
define two vector operator:
(2 1 2 a1
a‘; - (ap’ 7%)’[); - (bp’ 7bp)
then time reversal operator T has the property:

Ta)T =a_,, Th)T =b_,
TY(t,2)T = —y'y*U(~t, x)
T\Tl(tv l‘)T = \Tl(_tv x)’yl’yS

3.charge conjugation C

Ca,C =b,,Cb,C = a,
CY(z)C = —i(Uy"4*)7T
CYC = (—iy"y*¥)T

Y.3 The Vector Field

Since the Largaran of the eletromagnetic field is:

1

E:4

F"F,,

so we can easily compute the quantity(which is myself defined):

oL
uy — v
T 90,4,
which implies the conjugate monmentum to Ay is:
oL
0— =F% =0
T 900 A,

so the standard quantilization is not working here
to make a trick, we can use a new largrange:

1
4

§

L=—1F"F,, = 3("4,)

which is the same as before in lorentz gauge:0*A, = 0.

in such a form, the quantity as before defined is become:

oL
Hy — F;uj _ g ao’AU
™ = Se.A) £ (97 As)
so at this time we have conjugate monmentum about the zero component:
oL
0= =—£0°A, =—E0e A
™ 8(80140 ) f f hd

from this formula ,it is clearly to see that if we want to quantelize the eletromagnetic field from the

standard procedure ,the lorentz gauge is not working.
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Y./, INTERACTING FIELDS AND FEYMANN DIAGRAMS

and the motion equation is :
2, — (1 - €)9,(0 e A) =
so when we choose £ = 1 which called the Feymann Gauge,the motion equation is just the same as the

classic wavefunction:

AL >\) —zpz_|_ (/\)T (A)* zpw

where symbol A denote the polarlzatlon of the photon.

R.1 convention for the polarization vector

first we have p fixed,and we randomly choose a unit vector n which satisfy n > 0.at this time we have

two vectors fixed.we choose vector €(1)(?) that in the plane which is vertical to the n and p and satisfying:
Mp) o ¥ (p) = =0y, withA, N = 1,2
we choose €3(p) in the plane which n and p located and make it vertical to n and is unit:
*(p) en =0,(*(p)* = —1

to sommerize we have the relations in our convention:

experp)
2 apecng) ="

A
e (p) o M (p) = ™
and the quantilization relation is:

(A% (2), A”] = i 6 (x — y)

T.4 Interacting fields and feymann diagrams

a notation about the units:
when using natural units,since:

so the quantity has these relations:

R.1 Three Interacting System
for the first interacting system,we consider the 4th—phi theory:

A
E—*( M¢) ¢2_

4
0?
the second one is the quantum electrodynamics:
_ 1 _
LQED = Edi'r‘ac + 'Cmuwwell + ['m = \IJ(Za - m)\lj - Z(EtV)z - e\II’yM‘I]Au
and the last one is the Yukawa theory:

'CYuka'wa = 'Cdirac + 'CK—G - g\I]\I](ZS
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Y.5 ELEMENTARY PROCESS OF QUANTUM ELECTRODYNAMICS

.2 Wick’s Theorem

T{p(x1)d(x2)p(x3)P(xq) - - } = N{p(z1)P(x2)p(x3)P(x4) - - - + all — posibble — contractions}

.3 cross section and S metrics

we have the expression for the cross section in ananolous with S metrics is:

1 d3 Dy ,
d M 245 _ E :
7= 2EA2EB|UA—’UB| H(27r 32E >| (pA’pB%{pf})l ( 7T> (pA +pB pf)
and the differential cross section is :
do 1 p1|

|M(pa.ps — {ps})I?

(Ga)om = 2E,2Eg|va — vg| (27)24E

and the decay rate is:

(T 52 55 )M acps = (o)) s +ps— T

where the M is associated with the S metrics which is:

S=1lime
t—00

—i2Ht

S =1+l
2m)*6 W (pa+ps — Y _pr)M(pa,ps — {pr}) = (p1.p2- | T|paps)

for the T operator ,we have the following formula to concuate it:

e s . [T
<p1p2 Pn ’ZT|pAPB> = llmT%oo(lfie) (O <p1p2 *Pn ‘T(@ ! fﬁT diHr (t)) ‘pApB>0)connected—and—amputated

T.5 Elementary process of quantum electrodynamics

R.1 Some useful relations

(07" u)" = uy"v
any QED amplitute involving external fermions,when squared or summed over spin or overaged over spins,

can be converted to trace of products of dirac metrics.for example for the process of figure 1 we have:

T Z (M[* = ftmce[(zf’ = me)y" (¢ + me)y”Itrace[(k +mu)y, (K — my) 7]

epzns

the trace of an odd product of gamma metrics is zero(if n is odd):

trace[y!' -4 =0
triy*y"] = tr2g"1 —"7"]
for the even number gamma metrics product ,we can anticommute the first one to the right and cycle it

back ,we have the trace of two gamma metrics product:




Y.5 ELEMENTARY PROCESS OF QUANTUM ELECTRODYNAMICS

= 0% (p) (—ier*)u’ (p) (%) a’ (k) (—ier”)v" (k).

figure 1: ete™ — '~ process

similarly for the four gamma metrics:

triy* ") = tr[2g" Py = 772910y + 4 029" — A"y
thus we have the following formula:
tr(y'y Py = A(g" g* — 9" 9" + g"7g"")

10243

since v° = i7°y1y2~3 we have the trace fromula related to v°:

tr[y’] =0
trly*y"7°] =0
tr[’y“’y”fy”fy"fﬂ = —4ietP?
and there are some formula for the antisymmetric tensor:
"l € pe = —24
"l €y por = —60,,
P € ppo = —2(656, — 040,)
and there is another useful formula:
trly Py = el 7Py
if we set C' = ~~? then we have:
c*=1
CY"C = ()"
when the gamma metrics is dotted inside the trace,one can always simplify it:
VU = Gy = %g;w{v“,v”} = gy =4
VY = 29"
Yy = 49"

YA YAy = =297 9Py
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Y.5 ELEMENTARY PROCESS OF QUANTUM ELECTRODYNAMICS

R.2 the unpolarized cross section for the process:ee™ — ptpu~
when consider that =< is very small ,we can just set m. = 0,thus:
w

- Z |M (p°k)( o)+ (pok')(p' o k) +mi(pep)

s;mns

after a long journey of calculation, we dervie the cross section for this process:

do_ ot [T
and integrate it we can get the total cross section:
4o m? Lm,
ota 1— (4ot
Ttotal = 32 B+ 5 )
we can define a unit of R:
_ Ama?
- 3E2,

which means we regard the cross section for the process e™e™ — u™p™ as a basic unit.
R.3 ete™ — putp :helicity structure

do a?
dQ (eﬁ’eL — ML“R) 4E ( + 6089)2

do  _ _ o?
< (erer = i) = 75— (1 — cost)?

do  _ _ o?
T erer = prig) = (1 — cost)?

do a? 9
a0 —oleper = npup) = o (14 cost)

for a right-hannded spinor ,we have:
p-on=+n

for a left-handed spinor,we have:

some notes onn the bound state:

3I'(B — ete

o(ete” — B) = 4r? i )(5(E62m — M?)

the cross section for ee™ to a bound state with spin-1 is that:

U(0)[2
olete” = B) = 64773a2| Z\(ﬁ?‘ S(E2, — M?)

and the decay rate for the bound state is:

16ma? [¥(0)?

['(B—ete)= 3 Y
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Y.5 ELEMENTARY PROCESS OF QUANTUM ELECTRODYNAMICS

= — u(p) )y ulpr) w(py)vuu(pe).

figure 2: ey~ — e p process

figure 3: illustration for the definition of mandelstam variable which involving 2-body to 2-body scattering process

R.4 e pu~ — e p scatter

the process’s feymann diagram is presentend in figure 2. just similar to the calculation with ete™ —
wrpu~,we can easily get the deferiential cross section:
2

do o
R — E k 2 E L 0 2 2 1— 0
dQy  2k%2(E + k)?(1 — cosf)? [(E+ k)" + (E 4+ kcost)” —m;,(1 — cost)]

Crossing Symmetry:

where phi is the antipartical of ¢ and k=-p
Mandelstam Variable: when the initial and final state are all two particals we can define the variables

called Mandelstam Variable as below(see figure 3 for the process):
s=(p+p) =(k+k)
t=(k-p)? =k —-p)
u= (K -p?=(k-p)

we can easily work out a relation:
s+t+u= Z m7
i
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Y.5 ELEMENTARY PROCESS OF QUANTUM ELECTRODYNAMICS

figure j: compton scattering process

R.5 Compton Scattering

the feymann diagram for this process is presented in figure 4

so the amplitute is :
o MY 4 29—y A 4 297t
IM = —ie Eu(kl)ey(k)u(p/ [ ek el Ju(p)

similar to the sum of electron polarization,there is also a good relation for sum of the photon polar-
ization which is:
Z 6:;61/ — —9uv

polarization

with this in mind, we can easily get the quantity we want:
et I 11 117 11T

1 2 _ €
12 M= G Gren e T Grempe ) e k)

4

spins

after a long journey of calculation we have the relations below:

I =tr[(y +m)(yY" kv + 29"p")(p + m) (v kv + 27u00)]
=16(4m* —2m*pep +4m’*pek —2m?p ek +2(pek)(p e k))
(8)

=16(2m* + m*(s —m?) — %(s —m?)(u—m?))

where the s,t,u is the Mandelstam Variables.
similarly we can work out the other three terms:
1
IIII:16(2m4+m2(u—m2)—i(s—mQ)(u—mQ)) (9)

II = IIT = —8(4m* + m?(s —m?) + m?*(u —m?)) (10)

finally we have :
1 1 i( 1
pek pek’

) +m )]

1 2 o aPek  pek 9
4Z|M| =2 [pok+pok’+2m (pok: pek

spins

when we work in the fram of lab,we can make all the p,p’,k,k’ illustrated as figure 5.
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Y.6 RADIATIVE CORRELATION

k' = (' ,w sin0,0,w’ cos )

Before: After: JJ_,N/\J\"
0

SN ® \ g}"\g .
k= (w,w2) p=(m,0)

figure 5: compton scattering process in lab reference

thus we have the differtial cross section:

o 111wt
d(cosf) 2w 2m 87 mw ‘4

spins

W w .
= (*)2[; + - sin® 0]

where:

this is called Klein-Nishina-Formula

when w — 0,then % — 0,thus we have:

do Ta?
=—(1 20
d(cosf)  m? (14 cos™6)

which is the classical results which is known for all of us.

T.6 Radiative Correlation

Some Identities:
Ward Identity:
k,M" =0
Gordon Identity:
pr Pt iotg,
2m 2m

u(p')y*ulp) = u(p'){
R.1 Soft Bremsstrahlung
The Current for a arbitory trajectory y*(7) is:
. dy* (T
@ =e [ Ds -y

we can consider a eletron with p get a sudden kick at(0, 6) which illustrated in figure 6 for this process,

we can use the current as a source to solve the maxwell equation to get the potential:

d*k ., —ie? p'H pH
AH — —ikx _
(z) /(27r)4e k? (pok’+i6 pokfie)
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Y.6 RADIATIVE CORRELATION

sudden kick at time t = 0,
*— - -
when particle is at x =0

p

figure 6: Soft Bremsstrahlung case: a electron get a sudden kick.

k!
= + - + -
k

figure 7: Electron Vertex Structure Illustration

and the riadiative part of the potential is:

3
Abad(z) = Re / (;lwljseikxAﬂ<k)
where: .
At (k) = — —
(k) ‘k;|(p.]€/+i€ pok—ie)

and the energy radiatied is:
2 2

[~ mey
2= [ G 2 5 Gathen)  Gopl  Gropl?

A

Calculating the same quantity using quantum theory:

d3k 1 2| p/ D

dU(P—>p/+7):dU(P—>P/)/(27T)32k e“lex o ( )|?
A=1,2

pek pek

do(p = + ) =—rroe do(p — ) & (L) (=L
e T 2 m2

where p is assumed tiny mass for photon to solve the divergence.

R.2 The Electron Vetex Function

Just as the figure 7 shows,we suppose the vertex is:

—iel™(p, p)

Using the Lorentz Invariance and Ward identity we can get the general form for it:
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Y.6 RADIATIVE CORRELATION

figure 8: the order-a for I'*

io"q,

2m

I(p',p) = v Fi(q*) + Fy(q?)

where F; and F5 is unkown function called form factor

for the Lande g-factor we have the ralation:
g9 = 2(F1(0) + F»(0))

A trick for some integration:

1 ! (n—1)!
7A1A2An —A dxldxn(;(zmz_l)(mlAl_anAn)n

1 ! [Tat L(my+---my)
— . dz, =1 i
A AT A / v () = 1) s S W T ma) - T ()

Feymann Parameter:

1 ! 1
(k _p)Z(kQ _ mg) = /0 d(Edy(S(I' +y— ].) [CE(/‘? —p)2 n y(k2 — m2)]2

1
1
= dxdyé -1
/o vdyd(z +y )(k:2—2xk:~p+xp2—ym2)2

when we define [ = k — xp, then the whole integration is only rely on the [? and can trasfer to spherical
coordinate to calculate the monmentum integration.the variable x,y is called Feymann Parameter.

we can use Wick rotation to change from Minkovski space to Eculid Space:
1° =dl%; l=lg
then the intergration becomes:

4 1 _ 7 1 4 1
/ TR = Ty (2o / A PN

the right hand side inner product of the above equation is the inner product in Eculid Space. Using all

the tricks above ,one can work out the diagram(figure 8):

1
2 dwdydzs(z +y+ 2 — 1)

2 J

<) 5+ 1 (1 2) (1= e+ (1~ 4z + )
ioﬂyqu 1 2
e om®(1— =) up)
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Y.6 RADIATIVE CORRELATION

= ’L_L(p’) tMhard ’u(p)
/1 1 /12 2
) C( p _ P ) -e( p _ P )
Pk pok Pky prko
p/in phn
-e( A )
P kn P k‘n

figure 9: One can work out such diagram

figure 10: scattering a real photon process

where A is a Parameter Introduced to solve the divergence.:

1 1 1
(h—p?) +ie 7 (h—p?) +ic  (k—p?)—A"+ie

with such substraction,the divergence of this type:

, I ,, I &
/dl (ZQ+A)3_>/dl ((12+A)3 - (52+AA)3)

R.3 Summution And Interpreatation of Infrared Divergence.

and for a vitural photon such as the diagram like figure 8,Its value is(when connected to another
diagram):
62 d4]€ —q p/ p/ P

= (F — 2oy
2 2m)*k2+iep -k p-k

— =X

with above calculation :
X =2 i) L
opd IR 22
and the differential cross section for scattering a real photon like diagram(figure 10) is:
dSk 1 p/,u p,u p/l/ pl/
[ apcom iy = Zod - 2y —y
(2m)3 2k p-k p-k"p-k p-k

with above calculation,we have:

_ o 2 E12
Y = ;fm(q )hlp

so we have:
do

N Y
dQ(p—>p)e

> do ,
Z@(p—w +ny) =
n=0
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Y.7 RADIATIVE CORRELATION:SOME FORMAL DEVELOPMENT

and the correction for arbitrary vitural photon is:

oo

Z%aneX

n=0

so the total differential cross section obseverd is:

do _do N 29X v
(dQ )measured - dQ (p — P )6 €
A A
a0 bp—=Dp

Which Is Not Depend On The Vitural Photon Mass p

T.7 Radiative Correlation:Some formal Development

R.1 Field Strength Renormalization

we can use the spectrol of interacting hamitonian H to create a identity operator,since H is commute

with the total momentum P,we can choose the states with:

|Q>’ |)‘0>7 |/\p>

where the relations is:
HIQ) = 0]92), PI2) = 0]2)

HlXo) = EolXo) = ma|do), PlAo) = 0]o)

H’/\p> = Ep|)‘p>7P|/\p> :p|)‘p>

E, = \/ | —l—mi

since the state with total momentum zero is not only one,so different A give the different such states;

where,

then we can use there states to construct the identity operotor:

1= (9] +Z/(5T§Z)2]15A|Ap><kpl

insert this operotor into the correction function one can get:

1

QUs@owI) = Y [ Gl 00 )

so we have dervied the Kallen-Lehmann spectral representation of the two-points function:

@iroswin = [ 45

p(M*)Dp(z —y, M)
and the general form for p(M?) is:

p(M?) = 2m8(M? —m3)|(Q](0)[ Ao}

p(M?) = 2m§(M? — m?\)Z + nothing — untill — M? > (2m)?

we call Z as the field strength renormalization
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Y.7 RADIATIVE CORRELATION:SOME FORMAL DEVELOPMENT

P\/ “\//pz

(P1p2| S kiko) = (\/2)4 Amp

figure 11: Using LSZ formula to calculate the S metrics elements.

and the fourier transfer of the two points function is:

, A > dM? i
40P (T Q=__"“ / M?)——————
/d e (QT(z)#(0)[€2) p2 —m? + ie + oam2 2T i >p2 — M? +ie

and for the dirac firld,the quantity is:

iZ(p+m) N

2 —m?2 + e

/ e (Q|T4(2)$(0)|Q) =

1.2 The LSZ reduction formula

Lehmann,Symanzik,Zimmerman;

1;[ / d4xi€ipizi l;[ / d4yj€_ikjyj <Q|T{¢(x1) te Qb(xn)(b(yl) T ¢(ym)}|ﬂ>

P9+ By, K9+ By :(H vz (H kQ_ﬁ Y1+ palSlEr - k)

p7 —m? +ie m? + ie

using LSZ reduction formula,one can work out the feymann diagrammatic method for the S metrics

elements 11

R.3 The Optical Theorem

since

Sfs =1

on can get the result:
—i[T -T =T'T

insert a complete set of intermedia states one can get:
— i[M (kiks — pip2) — M (p1p2 — kik2)]
ST [ i) M v = oG = {00 x (2096 + 2= 3 )
so one can get the optical theorem:

2ImM (k1ks — kika) = 2FcnPem 0ot (k1ka — anything)
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{(g1---(qi—k)--)
> b o ONNE
insertion i
points
(P1--Dn) (p1---pn)
figure 12: The Ward-Takahashi Identity
k+q
d*k i i
- 12 4 v
= (—ie)*(—1 tr| vy
”_q“’ v = (—ie)*( )/‘(%)4 r[ﬁ/ ) Frd-m
k = il15"(q)- (7.71)

figure 13: The feymann diagram for loop

.4 The Ward-Takahashi Identity

the warden identity is illustated in figure 12.
Ward identity is the diagrammatic expression of the current conservation,which is in turn a conse-

quence of gauge invariance

R.5 Renormalization of the Electric Charge

the definition and diagram is illustrated as figure ?? and 7?7, from the ward identity ,one can expect

the form:

1" (q) = (¢*9"" — ¢"q")1L(q)
thus the calculation result is as the figure 15 shows. where the Z3 is called charge regulization:

1

%= 1710)

ey — Z3€0

/,"'

7l \./'_\:\r'/ 1PI1 v = ﬂlpu(q)‘

q =

figure 14: The 1PI Part
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A ﬁ _igﬁ“’ _?:Q.UP q QU 2

—1 ( 9.9y ) —1 (qpqu
T 71 v Ay g i + e )
(1 -T(g?)) \™*" ¢ ¢\ ¢

figure 15: the result of the above digram

or ces m——t ., ,. > - e

figure 16: the charge regulization

after a long journey of calculation using feymann parameter, wick rotation ,one can work out:

i / dx/ d4lE 129" —22(1 — z)g"q” + g™ (m* + z(1 — z)¢?)
(12 +A)?

115" (¢
with:
A=m?—z(1—-1x)g

which is baddly ultraviolet divergent. and voilate the ward identity.

R.6 Dimennsional Regularization

The area of a d dimensional unit sphere is:

2
dQy =
/ r(9)

and one can work out the d-dimensional integration using gamma and beta function:

/ddzE 1 1 re-9.1 4
@2m)? (13 + A2 (4m)s T(2)

then we take the limit d — 4 since:

d 4—¢€ € 2
Pe-5)=T@- "5 =T() = -7+0()
then the above integration is:
dlg 1 1 2
e =g 4= ——(——InA — In(4
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Y.8 FUNCTIONAL METHOD

(

similarly:
/ dlg 1 1
(2m)d (13, + A)» N (4%)% I'(n) A
2m)? (I3 + A" (422 D(n) A
in d dimensional space
gw}guu =d
L
MY — — =l=g"
the dirac metric becomes a set of d metrics
{7} = 29", tr1] = 4
VY= =2 ="
—eyVy”

VY APy = 4g™"
VYAV = =297y + ey y

after a long journey of calculation one can work out
1157 (q) = (49" — ¢"q")illa(¢?)
r2-9)

2 1
se / drz(l —x) .
0 A

)

with,
HQ(QQ) = (471_)%
() ~asa= —/ doa(1 — x)(% “ A — 4 + In(47) + O(€))
1+m(mr)% e

vir) = -2

the rediative correction term is called Uehling Potential

T.8 Functional Method
R.1 Path Integrate in Quantum Mechanics
U(qa7 qb, T) <q¢l |e_iHT|qb>

when the hamitonian is weyl ordered we can express it of the form of integration in phase space
H (i, pi)))

(H/Dq ) Dp(t))eapli /0 dtz pidi —

qaaqbv

)= [ Docan / d'2L(8(x))

for a scalor field:
Qa» Qba
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Y.8 FUNCTIONAL METHOD

R.2 functional quantization of scalor field

The two-point correlation function is expressed as:

[ Do (x1)p(xa)exp(i 1 d*zL(p()))
[ Dgexp(i [, d*zL(H(x)))

(QUT{on (x1)Pn (x2)}|€2) =

we can define a generating functional Z[J]:
200 = / Dt | de(E+I(@)6())
one can work out this for free K-G theory:
Z[J) = Zoe™? /d“xd“yJ(ﬂ:)Dp(x —y)J(y)

then we can use this generating functional to get the correlation functions:

1, .6 6 0
7 57wy T T

(QT{p(z1)p(x2) - - - D)} ) = )Z1J)|s =0

Z[J] is like the portion function in statistical physics,and J(x) is like the external field.

R.3 functional quantization of EM field
similarly,using the Faddeev and Popov trick,one can work out the correlation functions for EM Field:

[ DAO(A)et I 2r d'ale=3 (0" 4,77

QTOA)Q) =1 —i
(QUTOA)I2) UMy - oo(1-ie) fDAeif,TTd‘lw[llfi(auAu)Q]

and the proton propogator is:
y kH kY
(6"~ (1 -7 5)

—1q
k2 + ie

R.4 functional quantization of Dirac field
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T.9 Remarks On The Normal Operator

RZ X Normal Operator N fFRZ&ERK . LLA:
N(aa' —a'a) = a'a —a'a =0

B2, NAsh— M k:
N(anr — aTa) = N([a,aT]) =N(1)=1

LT TP, XU N e GRS, PATHELIHE—F Normal Operator N
R.1 Normal Operator JfEH23H]

fai 1k, Normal Operator 2 fEMTE H i L 2BEHEAAHE 0] BIERF. o, “IAITZ R OK R,
TR AR R ) 7= A K AT R
{ama;r)}p

FIAXAEAFET LA BHAE R — LB G, X LR G HicsE R
[T
Hrp oz, =a, B z, = al . EAPBTENHANTENIES:
[L#vo v = [T [Tow
p p’ P p’

SEABL LR RAIT, 28 e FIARXNZLME G Wik G _ERY C-AUR=ER] C[G], Hivr C[G] Lo

ESE
f= Z €99
geG

o EMAH S SN

Socug =D dyg e ey =dy¥g

g g

Horrhmys e R -

Z Cqg + ngg = Z(Cg +dg)g
B R -

C1 Z Cqg = Z C1C49
g g

Feik it SNy

Z €99 Z cgg = Z Z cgCq 99’
g g’ g 9
Normal Opertor N By/EH 25 (a5 2 ik SO A S ).
R.2 Normal Operator N e X
TE SCAE_ER A 18] B AR LA BAFPR A Normal Operator, 24 N:
o N Z{ERTERAEE B LM EAT

N(f+g)=N(f)+N(g),Vf,g € C[G]
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o N#ETTE e FIEHAL
N(e)=e
HHHFAEE 1 ceC
N(coe)=coe

PEASRATHEZC I, DA B R

N(a,f) = alN(g),Vf € C[G]

TR ST AT i T DASE H ok

N(fap) = N(f)ap,Vf € C[G]

N SAFRVE AL LSRR ) 22 M)

N(falg) =alN(fg).Vf.g € C[G]

R.3  RAkHiE

T N R 2R A B dER C B R], ITAEE — N A R AR 25 18] L 384T
FEUERT N HRAERE, AAUR S C[G] B, SRS A A R AR AR A o M B B4 . g,
e N() BRI E 28 B AR C[G] _ERYICER. O 7R~ ek, JAMERBA — 1 HE
YIPLARGE, TR ARG A K AT AR N

{ap, a;}

X LB b RAT A AR

L/ —
LAy ER b SRR R X W B AT A B R RO ) CG] BRI, HREITRZ A i bk
X5 RAG AP R AR, LN L 5y ok R e AU E) C[G] LpiAots, (B2 oo
& (L), HXAEE s bs B AR AR RS, P

chg = ngg & ey =dy,Vg
9 9

al,a, = (27)*6®) (p — p')

apa >

M, FEIHAT N A2, JATFREME R —A B B f R . JATEE AW Foe (8
fis set FRX AT SIS R L BRIUT) KB EAT LRI RIS M55, W

Fset(ap> - Izpa Fset(a;r)) = OZ)

XEMMFFS X, Op 2N T UG5 M T B AECE R iR 5 2 MR 2 FIBCE
LI RAR . MAXBHEFGE]— TSR E

A= {lgzn OP}
FIH HAFS S E—D HIEH B B 2R ClGe], XA B AEs H2 H h :

X, Op — Op B, # (21)*0% (p—p') o€
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W 2AE25 18] CGo] EnIPAE N AT, Y EF A Nony FAF CHIXI, FATRFHARICA Npny) bk
AT ARG R A
N,

p

Hor F SRR Faee I ERIES, (15 F SO bW BRAT M IS 1R A 1500 B fifE U CIG] 3 C[G,]
Al

hy:F_loNoF

R4 —2plr
HAnZE BB B RO, AR RGBT
{a,a'}
B EEAT
h(a,a’) = aa’ — a'a

A2 FATH

Nyny(h(a,a")) = F~* o N o F(h(a,a'))
HIH

F(h(a,a') =®O-0OK
RIGFATA -
NoF(h(a,a))=NRQO-0OR)=QOR-0ON=00e

MTTFRATA -

Nphy(h(avaT)) = F_1<0 oe)=0e1=0
[Fi] 34

Nypy(1) = F'oN(e)=F '(e)=1
{|EPS3

Nphy(1) # Nphy(aaT - aTa)

X e A

Fl)=e#XQO - OX = F(aa" —a'a)
R.5  &HiR

PR B R AMERN—ERS, B
Fier(ay) = ay

t

Fset (aT D

p>:a

Nppy = N

RILHEFETESFA B, SISO ST B REHRHEE T A S X LRSI 4
XEETP JESLZIWEN R T o EORYE, e N AT AR A R — T, NREI LTS . K0, "]
AEIETOR T RS, TR0 AR —80, HItwingx 1.
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